有关神经网络模型训练过程中loss值始终变化不大的问题

博主在训练一个6分类的神经网络模型时遇到loss值恒定不变,导致模型学习效果不佳。尝试了增加训练轮次、调整学习率和改变batch_size等方法无效。最终,通过改变模型权重初始化方式,成功使loss值下降,模型训练恢复正常,准确度提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近在训练一个神经网络模型,遇到了loss值始终不变的问题。

简要说一下,我训练的是一个分类器,是一个最后分类数为6的多元分类问题,但模型在训练多个轮次后准确度仍然在16.67%左右,loss值基本没有怎么变化,也就是说,我的模型参数并没有怎么变化,相当于没有在学习。

在网上查了各种资料后,我尝试了以下几种方法:

1.加大训练轮次

起初,我以为是我的模型训练轮次太少,但发现加大训练轮次后并没有效果,该方法对我的模型不适用

2.增大学习率

最开始我的模型优化器为Adam,学习率设置为1e-3,我认为可能时学习率太小,导致学习太慢(这个方法的思路和加大训练轮次差不多),但发现将学习率改为0.01或者0.1后会出现loss值过大为nan的问题,该方法也不行

3.调整batch_size

我尝试着增大或减小batch_size,发现模型的loss并没有什么改善

最后,在像无头苍蝇一样地尝试了各种方法之后,我看到了

如何解决神经网络训练时loss不下降的问题 | AI柠檬 (ailemon.net)https://blog.ailemon.net/2019/02/26/solution-to-loss-doesnt-drop-in-nn-train/这篇文章,受到了启发,尝试改变了模型权重参数初始化的方法,于是,模型训练时loss值开始较大幅度的下降,分类准确度也逐渐上升,模型训练终于正常了。

### 模型训练过程中RMSE变化不大的原因 在机器学习模型训练过程中,如果均方根误差(Root Mean Squared Error, RMSE)几乎保持不变,则可能存在多种潜在的原因: - **初始超参数设置不当**:如果使用的初始超参数不适合当前的数据集或任务需求,可能会导致优化过程无法有效降低损失函数。例如,在梯度下降法中,学习率过大可能导致振荡而无法收敛;反之,过小的学习率则会使训练进展缓慢甚至停滞[^1]。 - **特征工程不足**:输入给定模型前后的数据预处理和转换工作至关重要。缺乏必要的特征提取、编码或是降维操作都可能影响到最终的表现效果。此外,存在噪声或者异常也会干扰正常的学习流程[^2]。 - **样本分布偏差**:当训练集与验证集之间的差异较大时,即所谓的“领域偏移”,即使是在训练阶段表现良好的模型也可能难以泛化到新的实例上。特别是对于那些从未见过的新用户或物品而言,“冷启动问题”尤为突出[^3]。 - **局部极小陷阱**:复杂的非线性映射关系容易形成多个局部最优解区域,使得优化器陷入其中而停止前进。这种情况尤其多见于深层神经网络结构之中。 ### 解决方案建议 针对上述提到的各种可能性,这里给出一些改进措施来尝试改善这一状况: #### 调整超参数配置 通过网格搜索(Grid Search) 或者贝叶斯优化(Bayesian Optimization)等方式系统地探索不同组合下的最佳性能点,并适当调整诸如批量大小(batch size),迭代次数(epochs number),正则项系数(regularization strength)等关键因素。 ```python from sklearn.model_selection import GridSearchCV param_grid = {'learning_rate': [0.01, 0.05, 0.1], 'batch_size':[32,64]} grid_search = GridSearchCV(estimator=model, param_grid=param_grid,cv=5) grid_search.fit(X_train,y_train) best_params_ = grid_search.best_params_ ``` #### 加强特征构建质量 利用领域专业知识指导选取更具代表性的属性集合,同时考虑引入更多外部辅助信息源以增强表达能力。另外还可以借助自动化的工具包来进行更高效的探索实验,比如Featuretools库能够帮助快速生成丰富的候选变量列表。 #### 处理不平衡现象 采用重采样技术(resampling techniques)平衡各类别的比例差距,或者是设计专门的成本敏感型代价矩阵(cost-sensitive loss function)给予稀有类别更高的权重补偿其重要程度。对于推荐系统的特殊场景下,可以实施基于流行度(popularity-based methods)的方法缓解新加入实体带来的挑战. #### 防范过拟合风险 除了常规意义上的早停机制(Early Stopping Rule)外,还应积极运用Dropout层(dropout layers), L1/L2惩罚(Lasso/Ridge regression penalties)等多种手段抑制不必要的复杂度增长趋势,从而提高整体稳定性并促进更好的推广特性.
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

代码的女朋友

你的鼓励是我继续创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值