- 博客(54)
- 收藏
- 关注
原创 基于c++的yolov5推理之后处理详解及代码(二)
yolov5后处理大致分为四步:confidence过滤,NMS,预测框校准,结果可视化。首先需要对yoloV5的输出解析,认识清楚之后才能进行下一步。
2024-08-15 00:12:14 932
原创 基于c++推理yolov5的代码(三)全部代码
坦白来说,这一块还没有完全搞明白,但这一份针对我的设备是ok的。也就是cpp_tensorrt_infer.cpp。主要包含了yoloTRT的类。
2024-08-15 00:04:42 249
原创 基于c++的yolov5推理之后处理详解及代码(二)
yolov5后处理大致分为四步:confidence过滤,NMS,预测框校准,结果可视化。首先需要对yoloV5的输出解析,认识清楚之后才能进行下一步。
2024-08-15 00:01:20 1181
原创 基于c++的yolov5推理之前处理详解及代码(一)
之前实现了基于win环境中的python的加速部署过程,现在将c++实现过程进行记录,这次记录会非常详细。总的来说只要整个过程的思路捋清楚,保证思路是正确的,做起工作来就比较有方向性,开始记录。
2024-08-14 23:57:30 1368
原创 windows平台使用tensorRT部署yolov5详细介绍,整个流程思路以及细节。
自己在网上摸索了很久的基于windows平台的tensorRT部署的问题,终于跑通了,我在找资料的过程中没有找到从思路和细节上都具备的文档,我个人觉得思路最重要,我是很多份拼凑出的思路,顺着思路(有时候会错)一点一点解决问题才得出的结果,所有我打算写这份文档,更加侧重整体逻辑思路,技术细节我理解只要解决思路正确,肯定很多人踩过坑,找一找肯定有的,当然我也会提到。
2024-01-31 16:10:48 2734 4
原创 解决Ubuntu20.04远程时必须连接显示器
此文档解决Ubuntu20.04远程使用时必须连接服务器的问题。通过使用虚拟服务器,让设备无显示器也可以远程。只需要新建一个文件,将命令粘贴进去即可。
2024-01-29 11:09:02 2687 3
原创 欧氏、曼哈顿、马氏距离
马氏距离(Mahalanobis Distance)、欧氏距离(Euclidean Distance)、曼哈顿距离(Manhattan Distance)是常用的距离度量方式,它们在数据分析、模式识别、聚类等领域中经常被使用。这些距离度量方式在数据分析、机器学习、模式识别等领域中有不同的应用场景,选择合适的距离度量方式取决于具体问题的性质。在实际应用中,根据具体问题和数据的性质选择适当的距离度量方式,以更准确地反映数据之间的距离关系。、**欧氏距离(Euclidean Distance)
2024-01-25 16:44:35 842
原创 git的使用思维导图
源文件在github主页:study_collection/cpp学习/git at main · stu-yzZ/study_collection (github.com)
2023-12-19 15:50:28 502
原创 通过头文件和makefile编译多个cpp文件
首先需要知道我们用到的三种文件:1、.cpp这是c++的源文件,源码。2、.h头文件,包含需要用到的所有cpp文件3、.o文件,生成的可执行文件。
2023-12-19 15:44:57 886
原创 Transformer中的多头注意力机制-为什么需要多头?
Transformer为什么使用多头注意力机制呢?多头可以学习到不同维度的特征和信息。为什么可以学习到不同维度的信息呢?答案是:多头注意力机制的组成是有单个的self attention,由于self attention通过产生QKV矩阵来学习数据特征,那每一个self attention最终会产生一个维度上的输出特征,所以当使用多头注意力机制的时候,模型就可以学习到多维度的特征信息,这使得模型可以从多个维度更好的理解数据。同时多头注意力机制还是并行计算的,这也符合现在硬件架构,提升计算效率。
2023-11-27 17:12:58 4241 2
原创 wsl和windows下编译C++以及函数重载和函数模板的问题记录
今晚发现了问题所在。每次新建工作区的时候会自动生成.vscode文件夹,里面是配置好的tasks和launch的json文件,所以每次使用官方文件配置的之后,那个工作区就可以正常使用了,但是如果在Ubuntu中新建文件夹的话,.vscdoe文件夹没有复制过来,或者说没有重新正确建立,所以每次都报错。同样不同类型的数据比较大小,函数名相同,但根据参数类型和参数个数总能匹配到相对于的函数上。同样的函数体,但是针对不同类型的参数,需要多次写这个非常相似的函数,这是非常繁琐的,而函数模型的出现就是解决这种问题。
2023-11-08 03:02:26 322
原创 半监督学习思路学习记录
3、训练结束的条件可以是将无标签数据作为网络的输入,得到输出的预测标签,在一定置信度之内的数据可以划分到有标签数据中,直到训练集中的数据都有了标签,此时可以认为分类器就是最终分类器。一、半监督学习思路semi-supervised learning(SSL)1、首先确定训练集中包含两种数据:labeled和unlabeled。2、我们最终目的是得到一个分类器,即网络模型。最终得到的网络模型即为最终的网络模型。
2023-06-21 16:03:35 135
原创 自监督学习初步认识
Self-Supervised Learning,又称为自监督学习,我们知道一般机器学习分为有监督学习,无监督学习和强化学习。而 Self-Supervised Learning 是无监督学习里面的一种,主要是希望能够学习到一种通用的特征表达用于下游任务 (Downstream Tasks)。自监督学习主要是利用辅助任务(pretext)从大规模的无标签数据中挖掘自身的标签信息,通过这种构造的标签信息对网络进行训练,从而可以学习到对下游任务有价值的表征。也就是说,
2023-06-21 15:58:36 581
原创 MedSegDiff: Medical Image Segmentation with Diffusion Probabilistic Model
简单不看版本:这是作者的第一版本文章,总的来说比较简单。总共提出两点改进:1、由于医学图像较为特殊,病变组织很难与背景相区别,尤其是低分辨率的图像。另外作者认为原图中有很多目标的信息,但是很难分割,而扩散模型中的任意t时刻的分割图中有较为增强的分割目标信息,但不准确。基于这两点,作者提出了将两者融合互补的ideal。作者提出了一个动态条件编码器dynamic condition encoding,在每一步的时候都将两幅feature map进行融合。首先假设扩散模型已经生成了一张t时刻的feature ma
2023-02-28 21:19:49 4642 15
原创 SegDiff: Image Segmentation with Diffusion Probabilistic Models 基于扩散模型的图像语义分割模型
扩散模型应用到语义分割的一篇文章,其中穿插了生成模型的简单介绍。
2023-02-27 13:53:16 6093
原创 单机多卡和单机单卡训练模型,权重文件中多了module
在自己电脑上(单卡)调试好模型,然后放到服务器(多卡)上跑,设置成了多卡训练,保存的模型字典中自动都增加了一个module,导致我在自己电脑上加载时候checkpoints不匹配。所以有了这份记录。
2023-02-27 13:42:32 782
转载 nn.DataParallel权重保存和读取,单卡单机权重保存和读取,二者之间的转换。
在自己电脑上(单卡)调试好模型,然后放到服务器(多卡)上跑,设置成了多卡训练,保存的模型字典中自动都增加了一个module,导致我在自己电脑上加载时候checkpoints不匹配。所以有了这份记录。
2022-09-30 21:44:30 1048 2
原创 VIT Adapter【Vision Transformer Adapter for Dense Predictions】论文笔记
cvpr2022收录文章。使用cnn提取空间先验特征,和transformers分支进行信息交融,成为新一代屠榜backbone,提升了下游任务的准确度。
2022-07-08 12:09:31 2934
转载 分割任务的Loss函数【转】
我来谈谈分割任务的Loss函数。首先想要解释一下,Loss函数的目的是为了评估网络输出和你想要的输出(Ground Truth,GT)的匹配程度。我们不应该把Loss函数限定在Cross-Entropy和他的一些改进上面,应该更发散思维,只要满足两点:(1)能够表示网络输出和待分割目标的相似 2)Loss的计算过程是可导的,可以进行误差反传...
2022-06-22 20:52:48 716
转载 TensorBoard功能详解及实例说明
TensorBoard 是 TensorFlow 中强大的可视化工具,支持标量、文本、图像、音频、视频和 Embedding 等多种数据可视化。在 PyTorch 中也可以使用 TensorBoard,具体是使用 TensorboardX 来调用 TensorBoard。除了安装 TensorboardX,还要安装 TensorFlow 和 TensorBoard,其中 TensorFlow 和 TensorBoard 需要一致。T...
2022-06-18 15:54:47 3267
转载 transforms的二十二个方法
本文对transforms.py中的各个预处理方法进行介绍和总结。主要从官方文档中总结而来,官方文档只是将方法陈列,没有归纳总结,顺序很乱,这里总结一共有四大类
2022-06-18 14:13:09 1414
原创 Dual-stream Network for Visual Recognition论文记录
cnn和transformers的结合作品,分析了两者差异,并将优势融合。
2022-06-15 00:55:19 1019 4
转载 神经网络训练时loss不下降的问题
如何解决神经网络训练时loss不下降的问题?当我们训练一个神经网络模型的时候,我们经常会遇到这样的一个头疼的问题,那就是,神经网络模型的loss值不下降,以致我们无法训练,或者无法得到一个效果较好的模型。导致训练时loss不下降的原因有很多,而且,更普遍的来说,loss不下降一般分为三种,即:训练集上loss不下降,验证集上loss不下降,和测试集上loss不下降。...
2022-06-14 09:14:14 5664
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人