统计学基础
文章平均质量分 57
tianbwin2995
这个作者很懒,什么都没留下…
展开
-
关于beta分布的理解
背景在Machine Learning中,有一个很常见的概率分布叫做Beta Distribution:同时,你可能也见过Dirichelet Distribution:那么Beta Distribution和Dirichlet Distribution的意义何在呢?解释1. 如果给你一个硬币,投这个硬币有\theta的概率抛出Head,有(1-\theta)的转载 2016-02-03 09:56:50 · 3005 阅读 · 1 评论 -
机器学习中的相似性度量
http://www.cnblogs.com/heaad/archive/2011/03/08/1977733.html在做分类时常常需要估算不同样本之间的相似性度量(Similarity Measurement),这时通常采用的方法就是计算样本间的“距离”(Distance)。采用什么样的方法计算距离是很讲究,甚至关系到分类的正确与否。 本文的目的就是对常用的相似性度量作一转载 2016-03-06 10:55:21 · 262 阅读 · 0 评论 -
关于sigmoid函数
sigmoid函数是一个良好的阈值函数,连续,光滑严格单调关于(0,0.5)中心对称对阈值函数有一个良好的近似原函数:f(x) = 1/[1+e^(-x)]其导数f'(x)=f(x)*[1-f(x)],可以节约计算时间其中,当你写代码的时候,如果f(x)不好写,你可以写成f(x)=ex/1+ex的形式,其中ex是pow(2.7182818228,原创 2016-02-27 10:33:43 · 2770 阅读 · 0 评论 -
C语言实现logistic回归
logistic和线性回归的区别与联系 :区别:logistic回归是做分类(0,1,分类),线性回归是做预测(y值是多少)区别:线性回归的求法:求theta,让J(theta)达到最小值【J(theta)是凸函数】 logistic回归的求法:写出似然函数,求theta,让似然函数达到最大值【似然函数是凹函数】联系:求参数,使目标函数达到极值,都是用 梯度下降方法原创 2016-02-27 10:55:29 · 4464 阅读 · 0 评论 -
贝叶斯和频率的哲思
贝叶斯学派的论点:先验分布 + 样本信息 后验分布先验分布:theta服从某一个分布(beta分布)样本信息:样本服从参数为theta的(二项Bernulli)分布后验分布:更新theta的分布 这是人们更新了对theta的认知频率学派: 贝叶斯学派:theta是一个定值 th原创 2016-02-29 19:40:20 · 408 阅读 · 0 评论 -
做模型的人应该要关注模型到底是如何被使用的
https://www.douban.com/note/488015251/做数据模型的人最纠结的问题莫过于如何评估你的模型做的好还是不好。尤其是在复杂多变的商业场景下。有可能出现的问题:1、建模前对业务不了解或者了解的不透彻,对业务目标认知的缺失或者偏离导致模型的产出并不适配业务,从而导致模型可能离线效果很好,但是因为出发点就是错的,所以没有解决业务问题。模型做了而无用。转载 2016-04-28 22:31:17 · 529 阅读 · 0 评论 -
右偏型数据正态化
很多右偏数据可以正态化对数变换后呈正态分布,方差稳定不太严重的右偏,使用平方根变换严重右偏,倒数变换现在对大于1 的数据整理的还是蛮好的。对于0-1之间的数【尤其是概率】,很容易找不到原创 2016-04-18 15:22:14 · 8528 阅读 · 0 评论 -
EM算法
问题引入先思考这样一个问题:我们知道,人群中人的身高大致服从一个正态分布。那么现在,如果说我拿到了一个班的学生(就姑且假设是100人吧!)的身高,我想请你帮我估计一下,这个正态分布的参数θ:N(μ,σ)θ:N(μ,σ)。如何估计?好简单。应用极大似然估计的思想,把每一个样本拿出来相乘,求解得到概率最大的那个参数,即为我们想要的参数θθ好,现在我们将问题增加一点点难度,倘若我想问,这个班原创 2016-04-19 22:29:13 · 1564 阅读 · 0 评论