一起重新开始学大数据-Hbase篇-day 54Hbase介绍、shell、过滤器 |
目录
前言
HBase是一个分布式的、面向列的开源数据库,该技术来源于 Fay Chang 所撰写的Google论文“Bigtable:一个结构化数据的分布式存储系统”。就像Bigtable利用了Google文件系统(File System)所提供的分布式数据存储一样,HBase在Hadoop之上提供了类似于Bigtable的能力。HBase是Apache的Hadoop项目的子项目。HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库。另一个不同的是HBase基于列的而不是基于行的模式。
结构介绍
HBase – Hadoop Database,是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,利用HBase技术可在廉价PC Server上搭建起大规模结构化存储集群。
Hbase与GoogleBigtable异同
HBase是Google Bigtable的开源实现,类似Google Bigtable利用GFS作为其文件存储系统,HBase利用Hadoop HDFS作为其文件存储系统;Google运行MapReduce来处理Bigtable中的海量数据,HBase同样利用Hadoop MapReduce来处理HBase中的海量数据;Google Bigtable利用 Chubby作为协同服务,HBase利用Zookeeper作为对应。
Hbase主要用来存储非结构化和半结构化的松散数据(列存 NoSQL 数据库)
HADOOP生态系统图
系统架构
HMaster
- 为Region server分配region
- 负责Region server的负载均衡
- 发现失效的Region server并重新分配其上的region
- 管理用户对table的增删改操作
Region Server
- Region server维护region,处理对这些region的IO请求
- Region server负责切分在运行过程中变得过大的region
Region
- HBase自动把表水平划分成多个区域(region),每个region会保存一个表里面某段连续的数据;每个表一开始只有一个region,随着数据不断插入表,region不断增大,当增大到一个阀值的时候,region就会等分会两个新的region(裂变)。
- 当table中的行不断增多,就会有越来越多的region。这样一张完整的表被保存在多个Region Server 上。
Memstore 与 storefile
- 一个region由多个store组成,一个store对应一个CF(列族)
store包括位于内存中的memstore和位于磁盘的storefile。写操作先写入memstore,当memstore中的数据达到某个阈值,HRegion Server会启动flashcache进程写入storefile,每次写入形成单独的一个storefile - 当storefile文件的数量增长到一定阈值后,系统会进行合并(minor、major compaction),在合并过程中会进行版本合并和删除工作(majar),形成更大的storefile
- 当一个region所有storefile的大小和数量超过一定阈值后,会把当前的region分割为两个,并由HMaster分配到相应的region server服务器, 实现负载均衡
- 客户端检索数据,先在memstore找,找不到再找storefile
数据模型
- HRegion是HBase中分布式存储和负载均衡的最小单元。最小单元就表示不同的HRegion可以分布在不同的 HRegion server上。
- HRegion由一个或者多个Store组成,每个store保存一个columns family。
- 每个Strore又由一个memStore和0至多个StoreFile组成。
如图:StoreFile以HFile格式保存在HDFS上。
Data Model:
Table Model:
Rowkey | Time Stamp | CF1 | CF2 | CF3 |
"com.cnn.www" | t6 | CF2:q1=value3 | CF4:q4=value5 | |
t5 | ||||
t3 | CF1:q2:=value3 |
Rowkey
-
唯一标识一行数据
-
可以通过RowKey获取一行数据
-
按照字典顺序排序的。
-
Row key只能存储64k的字节数据 10-100byte
字典顺序:
对于数字1、2、3…n的排列,不同排列的先后关系是从左到右逐个比较对应的数字的先后来决定的。例如对于5个数字的排列 12354和12345,排列12345在前,排列12354在后。按照这样的规定,5个数字的所有的排列中最前面的是12345,最后面的是 54321。
Column Family(列簇、列族)和qualifier(列)
-
HBase表中的每个列都归属于某个列族,列族必须作为表模式(schema)定义的一部分预先给出。如 create ‘test’, ‘course’。
-
列名以列族作为前缀,每个“列族”都可以有多个列成员(column);如course:math, course:english, 新的列族成员(列)可以随后按需、动态加入。
-
权限控制、存储以及调优都是在列族层面进行的;
-
HBase把同一列族里面的数据存储在同一目录下,由几个文件保存。
Timestamp时间戳
-
在HBase每个cell存储单元对同一份数据有多个版本,根据唯一的时间戳来区分每个版本之间的差异,不同版本的数据按照时间倒序排序,最新的数据版本排在最前面。
-
时间戳的类型是 64位整型。
-
时间戳可以由HBase(在数据写入时自动)赋值,此时时间戳是精确到毫秒的当前系统时间
-
时间戳也可以由客户显式赋值,如果应用程序要避免数据版本冲突,就必须自己生成具有唯一性的时间戳。
cell 单元格
-
由行和列的坐标交叉决定。
-
单元格是有版本的。
-
单元格的内容是未解析的字节数组。
-
由{row key, column( = +), version} 唯一确定的单元。cell中的数据是没有类型的,全部是字节码形式存贮。
Hlog(WAL LOG)
-
HLog文件就是一个普通的Hadoop Sequence File,Sequence File 的Key是HLogKey对象,HLogKey中记录了写入数据的归属信息,除了table和region名字外,同时还包括 sequence number和timestamp,timestamp是”写入时间”,sequence number的起始值为0,或者是最近一次存入文件系统中sequence number。
-
HLog SequeceFile的Value是HBase的KeyValue对象,即对应HFile中的KeyValue
WAL log :
W:wirte A:ahead L:logging
WAL日志是数据库中一种高效的日志算法。从数据库原理而言,它实现的是redo日志模式。即修改数据库时,不直接修改数据库内容,而是将修改完的数据写入日志中,并同步到磁盘上,这样对其他读进程就没有影响。如果数据库崩溃,重启后扫描日志文件,然后更新的数据库中。
Region的分裂策略
region中存储的是一张表的数据,当region中的数据条数过多的时候,会直接影响查询效率。当region过大的时候,region会被拆分为两个region,HMaster会将分裂的region分配到不同的regionserver上,这样可以让请求分散到不同的RegionServer上,已达到负载均衡 , 这也是Hbase的一个优点 。
五种切分策略
- ConstantSizeRegionSplitPolicy
0.94版本前,HBase region的默认切分策略
当region中最大的store大小超过某个阈值(hbase.hregion.max.filesize=10G)之后就会触发切分,一个region等分为2个region。
但是在生产线上这种切分策略却有相当大的弊端(切分策略对于大表和小表没有明显的区分):
- 阈值(hbase.hregion.max.filesize)设置较大对大表比较友好,但是小表就有可能不会触发分裂,极端情况下可能就1个,形成热点,这对业务来说并不是什么好事。
- 如果设置较小则对小表友好,但一个大表就会在整个集群产生大量的region,这对于集群的管理、资源使用、failover来说都不是一件好事。
- IncreasingToUpperBoundRegionSplitPolicy
0.94版本~2.0版本默认切分策略
总体看和ConstantSizeRegionSplitPolicy思路相同,一个region中最大的store大小大于设置阈值就会触发切分。
但是这个阈值并不像ConstantSizeRegionSplitPolicy是一个固定的值,而是会在一定条件下不断调整,调整规则和region所属表在当前regionserver上的region个数有关系.
region split阈值的计算公式是:
-
设regioncount:是region所属表在当前regionserver上的region的个数
-
阈值 = regioncount^3 * 128M * 2,当然阈值并不会无限增长,最大不超过MaxRegionFileSize(10G),当region中最大的store的大小达到该阈值的时候进行region split
例如:
- 第一次split阈值 = 1^3 * 256 = 256MB
- 第二次split阈值 = 2^3 * 256 = 2048MB
- 第三次split阈值 = 3^3 * 256 = 6912MB
- 第四次split阈值 = 4^3 * 256 = 16384MB > 10GB,因此取较小的值10GB
- 后面每次split的size都是10GB了
特点
- 相比ConstantSizeRegionSplitPolicy,可以自适应大表、小表;
- 在集群规模比较大的情况下,对大表的表现比较优秀
- 对小表不友好,小表可能产生大量的小region,分散在各regionserver上
- 小表达不到多次切分条件,导致每个split都很小,所以分散在各个regionServer上
- SteppingSplitPolicy
2.0版本默认切分策略
相比 IncreasingToUpperBoundRegionSplitPolicy 简单了一些
region切分的阈值依然和待分裂region所属表在当前regionserver上的region个数有关系
- 如果region个数等于1,切分阈值为flush size 128M * 2
- 否则为MaxRegionFileSize。
这种切分策略对于大集群中的大表、小表会比 IncreasingToUpperBoundRegionSplitPolicy 更加友好,小表不会再产生大量的小region,而是适可而止。
① KeyPrefixRegionSplitPolicy
根据rowKey的前缀对数据进行分区,这里是指定rowKey的前多少位作为前缀,比如rowKey都是16位的,指定前5位是前缀,那么前5位相同的rowKey在相同的region中。
②DelimitedKeyPrefixRegionSplitPolicy
保证相同前缀的数据在同一个region中,例如rowKey的格式为:userid_eventtype_eventid,指定的delimiter为 _ ,则split的的时候会确保userid相同的数据在同一个region中。
按照分隔符进行切分,而KeyPrefixRegionSplitPolicy是按照指定位数切分。
①BusyRegionSplitPolicy
按照一定的策略判断Region是不是Busy状态,如果是即进行切分
如果你的系统常常会出现热点Region,而你对性能有很高的追求,那么这种策略可能会比较适合你。它会通过拆分热点Region来缓解热点Region的压力,但是根据热点来拆分Region也会带来很多不确定性因素,因为你也不知道下一个被拆分的Region是哪个。
②DisabledRegionSplitPolicy
不启用自动拆分, 需要指定手动拆分
Compaction操作
Compaction 作用
- 其实Compaction操作属于资源密集型操作特别是IO密集型,这点后面也会提及到,Compaction本质上其实就是牺牲了部分IO,以换取相对稳定的读取性能。
图片来源自:
https://mmbiz.qpic.cn/mmbiz_png/licvxR9ib9M6D6sDjXPZxHR1ic4LDKyicf2q9R9a7SLbxnvKOmjMdOiazq7DmjwSyyNKEMVV31Hv9eZhlTChPfjA3Nw/640
Minor Compaction:
- 指选取一些小的、相邻的StoreFile将他们合并成一个更大的StoreFile,在这个过程中不会处理已经Deleted或Expired的Cell。一次 Minor Compaction 的结果是更少并且更大的StoreFile。
Major Compaction:
- 指将所有的StoreFile合并成一个StoreFile,这个过程会清理三类没有意义的数据:被删除的数据、TTL过期数据、版本号超过设定版本号的数据。另外,一般情况下,major compaction时间会持续比较长,整个过程会消耗大量系统资源,对上层业务有比较大的影响。因此线上业务都会将关闭自动触发major compaction功能,改为手动在业务低峰期触发。
具体 HBase Compaction 详情
强烈推荐阅读文章:深入理解 HBase Compaction 机制
Hbase Shell
注意:
输入模式要删除所输入的shell要带ctrl加←
创建表
语法:create <table>, {NAME => <family>, VERSIONS => <VERSIONS>}
比如创建一个User表,info列簇
查看所有表
语法list
查看表详情
语法:describe 'User'
表修改
增加新的列族
alter 'User', NAME => 'info'
删除指定的列族
alter 'User', 'delete' => 'info'
插入数据
语法:put <table>,<rowkey>,<family:column>,<value>
put 'User', 'row1', 'info:name', 'xiaoming'
put 'User', 'row2', 'info:age', '18'
put 'User', 'row3', 'info:sex', 'man'
根据rowKey查询某个记录
语法:get <table>,<rowkey>,[<family:column>,....]
get 'User', 'row2'
查询所有记录
语法:scan <table>, {COLUMNS => [ <family:column>,.... ], LIMIT => num}
- 扫描记录
scan 'User'
- 扫描前2条
scan 'User', {LIMIT => 2}
- 范围查询 STARTROW(开始rowkey) ENDROW(结束rowkey)
scan 'User', {STARTROW => 'row2'}
scan 'User', {STARTROW => 'row2', ENDROW => 'row2'}
scan 'User', {STARTROW => 'row2', ENDROW => 'row3'}
另外,还可以添加TIMERANGE和FITLER等高级功能
STARTROW,ENDROW必须大写,否则报错;查询结果不包含等于ENDROW的结果集
统计表记录数
语法:count <table>, {INTERVAL => intervalNum, CACHE => cacheNum}
INTERVAL设置多少行显示一次及对应的rowkey,默认1000;CACHE每次去取的缓存区大小,默认是10,调整该参数可提高查询速度
count 'User'
删除
- 删除列
delete 'User', 'row1', 'info:age'
- 指定rowkey删除
deleteall 'User', 'row2'
- 删除表中所有数据
truncate 'User'
表管理
- 禁用表
disable 'User'
- 启用表
enable 'User'
- 测试表是否存在
exists 'User'
- 删除表(删除之前 先禁用表)
disable 'User'
drop 'User'
Hbase过滤器
作用:
- 过滤器的作用是在服务端判断数据是否满足条件,然后只将满足条件的数据返回给客户端
- 过滤器的类型很多,但是可以分为两大类:
- 比较过滤器:可应用于rowkey、列簇、列、列值过滤器
- 专用过滤器:只能适用于特定的过滤器
比较过滤器
比较运算符
-
LESS <
-
LESS_OR_EQUAL <=
-
EQUAL =
-
NOT_EQUAL <>
-
GREATER_OR_EQUAL >=
-
GREATER >
-
NO_OP 排除所有
常见的六大比较过滤器
BinaryComparator
按字节索引顺序比较指定字节数组,采用Bytes.compareTo(byte[])
BinaryPrefixComparator
通BinaryComparator,只是比较左端前缀的数据是否相同
NullComparator
判断给定的是否为空
BitComparator
按位比较
RegexStringComparator
提供一个正则的比较器,仅支持 EQUAL 和非EQUAL
SubstringComparator
判断提供的子串是否出现在中
示例代码
rowKey过滤器:RowFilter
通过RowFilter与BinaryComparator过滤比rowKey 1500100010小的所有值出来
@Test
// 通过RowFilter过滤比rowKey 1500100010 小的所有值出来
public void BinaryComparatorFilter() throws IOException {
Table students = conn.getTable(TableName.valueOf("students"));
BinaryComparator binaryComparator = new BinaryComparator(Bytes.toBytes(1500100010));
RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.LESS, binaryComparator);
Scan scan = new Scan();
scan.setFilter(rowFilter);
ResultScanner scanner = students.getScanner(scan);
Result rs = scanner.next();
while (rs != null) {
String id = Bytes.toString(rs.getRow());
String name = Bytes.toString(rs.getValue("info".getBytes(), "name".getBytes()));
int age = Bytes.toInt(rs.getValue("info".getBytes(), "age".getBytes()));
String gender = Bytes.toString(rs.getValue("info".getBytes(), "gender".getBytes()));
String clazz = Bytes.toString(rs.getValue("info".getBytes(), "clazz".getBytes()));
System.out.println(id + "\t" + name + "\t" + age + "\t" + gender + "\t" + clazz + "\t");
rs = scanner.next();
}
}
列簇过滤器:FamilyFilter
通过FamilyFilter与SubstringComparator查询列簇名包含in的所有列簇下面的数据
@Test
// 通过FamilyFilter查询列簇名包含in的所有列簇下面的数据
public void SubstringComparatorFilter() throws IOException {
Table students = conn.getTable(TableName.valueOf("students"));
SubstringComparator substringComparator = new SubstringComparator("in");
FamilyFilter familyFilter = new FamilyFilter(CompareFilter.CompareOp.EQUAL, substringComparator);
Scan scan = new Scan();
scan.setFilter(familyFilter);
ResultScanner scanner = students.getScanner(scan);
Result rs = scanner.next();
while (rs != null) {
String id = Bytes.toString(rs.getRow());
String name = Bytes.toString(rs.getValue("info".getBytes(), "name".getBytes()));
int age = Bytes.toInt(rs.getValue("info".getBytes(), "age".getBytes()));
String gender = Bytes.toString(rs.getValue("info".getBytes(), "gender".getBytes()));
String clazz = Bytes.toString(rs.getValue("info".getBytes(), "clazz".getBytes()));
System.out.println(id + "\t" + name + "\t" + age + "\t" + gender + "\t" + clazz + "\t");
rs = scanner.next();
}
}
通过FamilyFilter与 BinaryPrefixComparator 过滤出列簇以info开头的列簇下的所有数据
// 通过FamilyFilter与 BinaryPrefixComparator 过滤出列簇以info开头的所有列簇下的所有数据
@Test
public void BinaryPrefixComparatorFilter() throws IOException {
Table students = conn.getTable(TableName.valueOf("students"));
// 二进制前缀比较器
BinaryPrefixComparator binaryPrefixComparator = new BinaryPrefixComparator("info".getBytes());
// FamilyFilter 作用于列簇的过滤器
FamilyFilter familyFilter = new FamilyFilter(CompareFilter.CompareOp.EQUAL, binaryPrefixComparator);
Scan scan = new Scan();
scan.withStartRow("1500100001".getBytes());
scan.withStopRow("1500100011".getBytes());
// 通过setFilter方法设置过滤器
scan.setFilter(familyFilter);
ResultScanner scanner = students.getScanner(scan);
printRS(scanner);
}
列过滤器:QualifierFilter
通过QualifierFilter与SubstringComparator查询列名包含in的列的值
public void printRS(ResultScanner scanner) throws IOException {
for (Result rs : scanner) {
String rowkey = Bytes.toString(rs.getRow());
System.out.println("当前行的rowkey为:" + rowkey);
for (Cell cell : rs.listCells()) {
String family = Bytes.toString(CellUtil.cloneFamily(cell));
String qualifier = Bytes.toString(CellUtil.cloneQualifier(cell));
byte[] bytes = CellUtil.cloneValue(cell);
if ("age".equals(qualifier)) {
int value = Bytes.toInt(bytes);
System.out.println(family + ":" + qualifier + "的值为" + value);
} else {
String value = Bytes.toString(bytes);
System.out.println(family + ":" + qualifier + "的值为" + value);
}
}
}
}
@Test
// 通过FamilyFilter查询列簇名包含in的所有列簇下面的数据
public void SubstringComparatorFilter() throws IOException {
Table students = conn.getTable(TableName.valueOf("students"));
SubstringComparator substringComparator = new SubstringComparator("in");
FamilyFilter familyFilter = new FamilyFilter(CompareFilter.CompareOp.EQUAL, substringComparator);
Scan scan = new Scan();
scan.setFilter(familyFilter);
ResultScanner scanner = students.getScanner(scan);
Result rs = scanner.next();
while (rs != null) {
String id = Bytes.toString(rs.getRow());
String name = Bytes.toString(rs.getValue("info".getBytes(), "name".getBytes()));
int age = Bytes.toInt(rs.getValue("info".getBytes(), "age".getBytes()));
String gender = Bytes.toString(rs.getValue("info".getBytes(), "gender".getBytes()));
String clazz = Bytes.toString(rs.getValue("info".getBytes(), "clazz".getBytes()));
System.out.println(id + "\t" + name + "\t" + age + "\t" + gender + "\t" + clazz + "\t");
rs = scanner.next();
}
}
过滤出 列的名字 中 包含 “am” 所有的列 及列的值
// 过滤出 列的名字 中 包含 "am" 所有的列 及列的值
@Test
public void SubstringComparatorQualifierFilter() throws IOException {
Table students = conn.getTable(TableName.valueOf("students"));
SubstringComparator substringComparator = new SubstringComparator("am");
// 作用在列名上的过滤器
QualifierFilter qualifierFilter = new QualifierFilter(CompareFilter.CompareOp.EQUAL, substringComparator);
Scan scan = new Scan();
scan.withStartRow("1500100001".getBytes());
scan.withStopRow("1500100011".getBytes());
// 通过setFilter方法设置过滤器
scan.setFilter(qualifierFilter);
ResultScanner scanner = students.getScanner(scan);
printRS(scanner);
}
列值过滤器:ValueFilter
通过ValueFilter与BinaryPrefixComparator过滤出所有的cell中值以 “张” 开头的学生
@Test
// 通过ValueFilter与BinaryPrefixComparator过滤出所有的cell中值以 "张" 开头的学生
public void BinaryPrefixComparatorFilter() throws IOException {
Table students = conn.getTable(TableName.valueOf("students"));
BinaryPrefixComparator binaryPrefixComparator = new BinaryPrefixComparator("张".getBytes());
ValueFilter valueFilter = new ValueFilter(CompareFilter.CompareOp.EQUAL, binaryPrefixComparator);
Scan scan = new Scan();
scan.setFilter(valueFilter);
ResultScanner scanner = students.getScanner(scan);
printRS(scanner);
}
过滤出文科的学生,只会返回clazz列,其他列的数据不符合条件,不会返回
// 过滤出文科的学生
// 只会返回clazz列,其他列的数据不符合条件,不会返回
@Test
public void RegexStringComparatorFilter() throws IOException {
Table students = conn.getTable(TableName.valueOf("students"));
// 使用正则表达式比较器
RegexStringComparator regexStringComparator = new RegexStringComparator("^文科.*");
// ValueFilter 会返回符合条件的cell,并不会返回整条数据
ValueFilter valueFilter = new ValueFilter(CompareFilter.CompareOp.EQUAL, regexStringComparator);
Scan scan = new Scan();
scan.withStartRow("1500100001".getBytes());
scan.withStopRow("1500100011".getBytes());
// 通过setFilter方法设置过滤器
scan.setFilter(valueFilter);
ResultScanner scanner = students.getScanner(scan);
printRS(scanner);
}
专用过滤器
单列值过滤器:SingleColumnValueFilter
SingleColumnValueFilter会返回满足条件的cell所在行的所有cell的值(即会返回一行数据)
通过SingleColumnValueFilter与查询文科班所有学生信息
@Test
// 通过SingleColumnValueFilter与查询文科班所有学生信息
public void RegexStringComparatorFilter() throws IOException {
Table students = conn.getTable(TableName.valueOf("students"));
SingleColumnValueFilter singleColumnValueFilter = new SingleColumnValueFilter(
"info".getBytes(),
"clazz".getBytes(),
CompareFilter.CompareOp.EQUAL,
new RegexStringComparator("^文科.*")
);
Scan scan = new Scan();
scan.setFilter(singleColumnValueFilter);
ResultScanner scanner = students.getScanner(scan);
Result rs = scanner.next();
while (rs != null) {
String id = Bytes.toString(rs.getRow());
String name = Bytes.toString(rs.getValue("info".getBytes(), "name".getBytes()));
int age = Bytes.toInt(rs.getValue("info".getBytes(), "age".getBytes()));
String gender = Bytes.toString(rs.getValue("info".getBytes(), "gender".getBytes()));
String clazz = Bytes.toString(rs.getValue("info".getBytes(), "clazz".getBytes()));
System.out.println(id + "\t" + name + "\t" + age + "\t" + gender + "\t" + clazz + "\t");
rs = scanner.next();
}
}
列值排除过滤器:SingleColumnValueExcludeFilter
与SingleColumnValueFilter相反,会排除掉指定的列,其他的列全部返回
通过SingleColumnValueExcludeFilter与BinaryComparator查询文科一班所有学生信息,最终不返回clazz列
@Test
// 通过SingleColumnValueExcludeFilter与BinaryComparator查询文科一班所有学生信息,最终不返回clazz列
public void RegexStringComparatorExcludeFilter() throws IOException {
Table students = conn.getTable(TableName.valueOf("students"));
SingleColumnValueExcludeFilter singleColumnValueExcludeFilter = new SingleColumnValueExcludeFilter(
"info".getBytes(),
"clazz".getBytes(),
CompareFilter.CompareOp.EQUAL,
new BinaryComparator("文科一班".getBytes())
);
Scan scan = new Scan();
scan.setFilter(singleColumnValueExcludeFilter);
ResultScanner scanner = students.getScanner(scan);
Result rs = scanner.next();
while (rs != null) {
String id = Bytes.toString(rs.getRow());
String name = Bytes.toString(rs.getValue("info".getBytes(), "name".getBytes()));
int age = Bytes.toInt(rs.getValue("info".getBytes(), "age".getBytes()));
String gender = Bytes.toString(rs.getValue("info".getBytes(), "gender".getBytes()));
// clazz列为空
String clazz = Bytes.toString(rs.getValue("info".getBytes(), "clazz".getBytes()));
System.out.println(id + "\t" + name + "\t" + age + "\t" + gender + "\t" + clazz + "\t");
rs = scanner.next();
}
}
rowkey前缀过滤器:PrefixFilter
通过PrefixFilter查询以150010008开头的所有前缀的rowkey
@Test
// 通过PrefixFilter查询以150010008开头的所有前缀的rowkey
public void PrefixFilterFilter() throws IOException {
Table students = conn.getTable(TableName.valueOf("students"));
PrefixFilter prefixFilter = new PrefixFilter("150010008".getBytes());
Scan scan = new Scan();
scan.setFilter(prefixFilter);
ResultScanner scanner = students.getScanner(scan);
Result rs = scanner.next();
while (rs != null) {
String id = Bytes.toString(rs.getRow());
String name = Bytes.toString(rs.getValue("info".getBytes(), "name".getBytes()));
int age = Bytes.toInt(rs.getValue("info".getBytes(), "age".getBytes()));
String gender = Bytes.toString(rs.getValue("info".getBytes(), "gender".getBytes()));
// clazz列为空
String clazz = Bytes.toString(rs.getValue("info".getBytes(), "clazz".getBytes()));
System.out.println(id + "\t" + name + "\t" + age + "\t" + gender + "\t" + clazz + "\t");
rs = scanner.next();
}
}
分页过滤器PageFilter
通过PageFilter查询第三页的数据,每页10条
使用PageFilter分页效率比较低,每次都需要扫描前面的数据,直到扫描到所需要查的数据
可设计一个合理的rowkey来实现分页需求
@Test
// 通过PageFilter查询第三页的数据,每页10条
public void PageFilter() throws IOException {
Table students = conn.getTable(TableName.valueOf("students"));
int PageNum = 3;
int PageSize = 10;
Scan scan = new Scan();
if (PageNum == 1) {
scan.withStartRow("".getBytes());
//使用分页过滤器,实现数据的分页
PageFilter pageFilter = new PageFilter(PageSize);
scan.setFilter(pageFilter);
ResultScanner scanner = students.getScanner(scan);
printRS(scanner);
} else {
String current_page_start_rows = "";
int scanDatas = (PageNum - 1) * PageSize + 1;
PageFilter pageFilter = new PageFilter(scanDatas);
scan.setFilter(pageFilter);
ResultScanner scanner = students.getScanner(scan);
for (Result rs : scanner) {
current_page_start_rows = Bytes.toString(rs.getRow());
}
scan.withStartRow(current_page_start_rows.getBytes());
PageFilter pageFilter1 = new PageFilter(PageSize);
scan.setFilter(pageFilter1);
ResultScanner scanner1 = students.getScanner(scan);
printRS(scanner1);
}
}
通过合理的设置rowkey来实现分页功能
@Test
// 通过合理的设置rowkey来实现分页功能,提高效率
public void PageFilterTest2() throws IOException {
Table students = conn.getTable(TableName.valueOf("students"));
int PageSize = 10;
int PageNum = 3;
int baseId = 1500100000;
int start_row = baseId + (PageNum - 1) * PageSize + 1;
int end_row = start_row + PageSize;
Scan scan = new Scan();
scan.withStartRow(String.valueOf(start_row).getBytes());
scan.withStopRow(String.valueOf(end_row).getBytes());
ResultScanner scanner = students.getScanner(scan);
printRS(scanner);
}
多过滤器综合查询
查询文科班中的学生中学号以150010008开头并且年龄小于23的学生信息
@Test
// 查询文科班中的学生中学号以150010008开头并且年龄小于23的学生信息
public void FilterListFilter() throws IOException {
Table students = conn.getTable(TableName.valueOf("students"));
Scan scan = new Scan();
SingleColumnValueFilter singleColumnValueFilter = new SingleColumnValueFilter(
"info".getBytes()
, "clazz".getBytes()
, CompareFilter.CompareOp.EQUAL
, new RegexStringComparator("^文科.*"));
PrefixFilter prefixFilter = new PrefixFilter("150010008".getBytes());
SingleColumnValueFilter singleColumnValueFilter1 = new SingleColumnValueFilter(
"info".getBytes()
, "age".getBytes()
, CompareFilter.CompareOp.LESS
, new BinaryComparator(Bytes.toBytes(23)));
FilterList filterList = new FilterList();
filterList.addFilter(singleColumnValueFilter);
filterList.addFilter(prefixFilter);
filterList.addFilter(singleColumnValueFilter1);
scan.setFilter(filterList);
ResultScanner scanner = students.getScanner(scan);
printRS(scanner);
}
|
|
|
|
上一章-Hbase篇-day 53 Hbase安装及简析
下一章-Hbase篇-day 55 浅谈布隆过滤器、Hbase读写、Hbase的HA和Mapreduce读写Hbase数据
|
|
|
|
|
听说长按大拇指👍会发生神奇的事情呢!好像是下面的画面,听说点过的人🧑一个月内就找到了对象的💑💑💑,第二天买彩票中了大奖💴$$$,考试直接拿满分💯,颜值突然就提升了😎,虽然对你好像也不需要,你说是吧,吴彦祖🤵! |