Opencv运动物体常用的特征提取与匹配方法

本文介绍了Opencv中处理运动物体的特征提取与匹配方法,包括基于模型和学习的姿态估计。特征提取旨在降维,常用方法有几何特征、代数特征如PCA和LDA,以及变换系数特征。此外,还提及了Viola-Jones目标检测算法,该算法利用级联的boosted分类器和Harr特征进行目标检测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Opencv运动物体常用的特征提取与匹配方法

提取图像空间关系特征可以有两种方法:

1)  首先对图像进行自动分割,划分出图像中所包含的对象或颜色区域,然后根据这些区域提取图像特征,并建立索引;(分割——块特征——索引

2)  简单地将图像均匀地划分为若干规则子块,然后对每个图像子块提取特征,并建立索引 

姿态估计问题:确定某一三维目标物体的方位指向问题。

姿态估计在机器人视觉、动作跟踪和单照相机定标等很多领域都有应用。在不同领域用于姿态估计的传感器是不一样的。

基于视觉的姿态估计根据使用的摄像机数目分为单目视觉姿态估计多目视觉姿态估计。根据算法的不同又可分为基于模型的姿态估计基于学习的姿态估计 

1 基于模型的姿态估计方法 

基于模型(模型可以是简单的几何形体,如平面、圆柱,也可能是某种几何结构,也可能是通过激光扫描或其它方法获得的三维模型)的方法利用物体的几何关系或者物体的特征点来估计。

基本思想:利用某种几何模型或结构来表示物体的结构和形状,并通过提取某些物体特征,在模型和图像之间建立起对应关系,然后通过几何或者其它方法实现物体空间姿态的估计。

基于模型的姿态估计方法是通过比对真实图像和合成图像,进行相似度计算更新物体姿态。目前基于模型的方法为了避免在全局状态空间中进行优化搜索,一般都将优化问题先降解成多个局部特征的匹配问题

特点:非常依赖于局部特征的准确检测,当噪声较大无法提取准确的局部特征的时候,该方法的鲁棒性受到很大影响。

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值