首先先叠甲:
本人就是一个蒟蒻,勿喷,本人第一次参加CSP的比赛,因此没有经验
题目描述
小 R 有一个长度为 nnn 的非负整数序列 a1,a2,…,ana_1, a_2, \dots, a_na1,a2,…,an。定义一个区间 [l,r][l, r][l,r] (1≤l≤r≤n1 \leq l \leq r \leq n1≤l≤r≤n) 的权值为 al,al+1,…,ara_l, a_{l+1}, \dots, a_ral,al+1,…,ar 的二进制按位异或和,即 al⊕al+1⊕⋯⊕ara_l \oplus a_{l+1} \oplus \dots \oplus a_ral⊕al+1⊕⋯⊕ar,其中 ⊕\oplus⊕ 表示二进制按位异或。
小 X 给了小 R 一个非负整数 kkk。小 X 希望小 R 选择序列中尽可能多的不相交的区间,使得每个区间的权值均为 kkk。两个区间 [l1,r1],[l2,r2][l_1, r_1], [l_2, r_2][l1,r1],[l2,r2] 相交当且仅当两个区间同时包含至少一个相同的下标,即存在 1≤i≤n1 \leq i \leq n1≤i≤n 使得 l1≤i≤r1l_1 \leq i \leq r_1

最低0.47元/天 解锁文章
1289

被折叠的 条评论
为什么被折叠?



