Pandas.DataFrame删除行和列

本文详细介绍了如何使用Pandas删除DataFrame的行和列,包括利用del方法、.pop()方法和.drop()方法。以一个CSV文件为例,展示了如何通过.drop()方法删除行,如果设置inplace=True则会直接修改原数据。对于列的删除,可以使用del关键字直接删除,.pop()方法会将列弹出并从原数据中移除,而.drop()方法在设置inplace=True时也能删除原数据中的列。建议熟练掌握.drop()方法。
摘要由CSDN通过智能技术生成

本文通过一个csv实例文件来展示如何删除Pandas.DataFrame的行和列
数据文件名为:example.csv
内容为:

|date|spring|summer|autumn|winter|
|----|
|2000|12.2338809|16.90730113|15.69238313|14.08596223|
|2001|12.84748057|16.75046873|14.51406637| 13.5037456
|2002|13.558175|17.2033926|15.6999475 |13.23365247
|2003|12.6547247|16.89491533|15.6614647 |12.84347867
|2004|13.2537298|17.04696657|15.20905377| 14.3647912
|2005|13.4443049|16.7459822|16.62218797 |11.61082257
|2006|13.50569567|16.83357857| 15.4979282 |12.19934363
|2007|13.48852623|16.66773283| 15.81701437 |13.7438216
|2008|13.1515319|16.48650693 |15.72957287 |12.93233587
|2009|13.45771543|16.63923783 |18.26017997| 12.65315943
|2010|13.1945485|16.7286889|15.42635267 |13.8833583|
|2011|14.34779417|16.68942103 |14.17658043 |12.36654197
|2012|13.6050867|17.13056773 |14.71796777 |13.29255243
|2013|13.02790787|17.38619343 |16.20345497 |13.18612133
|2014|12.74668163|16.54428687|14.7367682|12.87065125|
|2015|13.465904|16.50612317 |12.44243663| 11.0181384
|season|spring|summer |autumn| winter|
|slope|0.0379691374|-0.01164689167 |-0.07913844113| -0.07765274553

删除行

In [1]:
import numpy as np
import pandas as pd
 
odata = pd.read_csv('example.csv')
odata

Out[1]:
date    spring  summer  autumn  winter
0   2000    12.2338809  16.9073011333   15.6923831333   14.0859622333
1   2001    12.8474805667   16.7504687333   14.5140663667   13.5037456
2   2002    13.558175   17.2033926  15.6999475  13.2336524667
3   2003    12.6547247  16.8949153333   15.6614647  12.8434786667
4   2004    13.2537298  17.0469665667   15.2090537667   14.3647912
5   2005    13.4443049  16.7459822  16.6221879667   11.6108225667
6   2006    13.5056956667   16.8335785667   15.4979282  12.1993436333
7   2007    13.4885262333   16.6677328333   15.8170143667   13.7438216
8   2008    13.1515319  16.4865069333   15.7295728667   12.9323358667
9   2009    13.4577154333   16.6392378333   18.2601799667   12.6531594333
10  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值