详细介绍如何基于深度学习的语义分割模型进行有效的背景去除(U2-Net)-含完整源码

目录

为什么使用 U2-Net 进行前景估计? 

U2-Net 环境下的残差 U-block (RSU) 架构

RSU 块的代码解释

U2-Net 架构说明

U2-Net 的训练和评估策略

训练数据集和增强

U2-Net 训练的损失和优化器

评估数据集和指标 

U2-Net 预测的定性分析

加载 U2-Net 和 U2-NetP 权重

数据预处理

准备模型预测

IS-Net 架构:推进 U2-Net 图像分割

IS-Net 的推理结果 

关键要点

结论

完整代码下载链接

参考


U2-Net(俗称 U 2 -Net)是一种简单但功能强大的基于深度学习的语义分割模型,它彻底改变了图像分割中的背景去除。其有效而直接的方法对于将前景与背景隔离是有益且必要的应用至关重要。此功能对广告、电影制作和医学成像等领域具有重要意义。

使用 U2-Net 特征有效去除背景 gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

TD程序员

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值