Caffe框架源码剖析(6)—池化层PoolingLayer

    卷积层ConvolutionLayer正向传导的目标层往往是池化层PoolingLayer。池化层通过降采样来降低卷积层输出的特征向量,同时改善结果,不易出现过拟合。最常用的降采样方法有均值采样(取区域平均值作为降采样值)、最大值采样(取区域最大值作为降采样值)和随机采样(取区域内随机一个像素)等。

    PoolingLayer类从Layer基类单一继承而来,没有派生其它子类。具体定义在pooling_layer.hpp中,

template <typename Dtype>
class PoolingLayer : public Layer<Dtype> {
 public:
  explicit PoolingLayer(const LayerParameter& param)
      : Layer<Dtype>(param) {}
  virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);
  virtual void Reshape(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);

  virtual inline const char* type() const { return "Pooling"; }
  virtual inline int ExactNumBottomBlobs() const { return 1; }
  virtual inline int MinTopBlobs() const { return 1; }
  // 最大值采样可以额外输出一个Blob,所以MaxTopBlobs返回2
  virtual inline int MaxTopBlobs() const {
    return (this->layer_param_.pooling_param().pool() ==
            PoolingParameter_PoolMethod_MAX) ? 2 : 1;
  }

 protected:
  virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);
  virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);
  virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
      const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
  virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
      const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);

  // 卷积区域尺寸
  int kernel_h_, kernel_w_;
  // 卷积平移步幅
  int stride_h_, stride_w_;
  // 图像补齐像素数
  int pad_h_, pad_w_;
  // 通道
  int channels_;
  // 输入图像尺寸
  int height_, width_;
  // 池化后尺寸
  int pooled_height_, pooled_width_;
  // 是否全区域池化(将整幅图像降采样为1x1)
  bool global_pooling_;
  // 随机采样点索引
  Blob<Dtype> rand_idx_;
  // 最大值采样点索引
  Blob<int> max_idx_;
};

具体实现在pooling_layer.cpp中,

template <typename Dtype>
void PoolingLayer<Dtype>::LayerSetUp(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top) {
  PoolingParameter pool_param = this->layer_param_.pooling_param();
  if (pool_param.global_pooling()) {
    CHECK(!(pool_param.has_kernel_size() ||
      pool_param.has_kernel_h() || pool_param.has_kernel_w()))
      << "With Global_pooling: true Filter size cannot specified";
  } else {
    CHECK(!pool_param.has_kernel_size() !=
      !(pool_param.has_kernel_h() && pool_param.has_kernel_w()))
      << "Filter size is kernel_size OR kernel_h and kernel_w; not both";
    CHECK(pool_param
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值