当基于LeNet网络的MNIST手写库训练完毕后,测试样本精度能达到99%以上。但是那错误的不到百分之一的样本是什么样子的呢?我们怎么才能把这些识别错误的样本可视化出来呢?
1.将测试错误样本打印出来
当运行测试时,最后的输出层为AccuracyLayer层。AccuracyLayer对前一层全连接层ip2的10个神经元输出结果进行排序,然后将最大值所对应的神经元序号与标签label进行比较,相等则判定预测正确;否则判定预测错误。所以,我们在这里添加输出判定错误的代码
void AccuracyLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
...
// check if true label is in top k predictions
for (int k = 0; k < top_k_; k++) {
if (bottom_data_vector[k].second == label_value) {
// 预测正确
...
}
else
{
// 预测错误
// index为batch中的图片序号(0~99),label为标签值,output为预测值
LOG(INFO) << "index:" << i << " lab