Caffe可视化MNIST错误识别样本

当基于LeNet网络的MNIST手写库训练完毕后,测试样本精度能达到99%以上。但是那错误的不到百分之一的样本是什么样子的呢?我们怎么才能把这些识别错误的样本可视化出来呢?

1.将测试错误样本打印出来

当运行测试时,最后的输出层为AccuracyLayer层。AccuracyLayer对前一层全连接层ip2的10个神经元输出结果进行排序,然后将最大值所对应的神经元序号与标签label进行比较,相等则判定预测正确;否则判定预测错误。所以,我们在这里添加输出判定错误的代码

void AccuracyLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
    const vector<Blob<Dtype>*>& top) {
  ...
  // check if true label is in top k predictions
  for (int k = 0; k < top_k_; k++) {
    if (bottom_data_vector[k].second == label_value) {
      // 预测正确
      ...
    }
    else
    {
      // 预测错误
      // index为batch中的图片序号(0~99),label为标签值,output为预测值
      LOG(INFO) << "index:" << i << " lab
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值