简单聚类方法K-means方法的实现

本文介绍了K-means聚类算法,这是一种非监督学习方法,用于无类别标记的数据分类。K-means算法将n个对象分为K个聚类,以使相同聚类内的对象相似度高,不同聚类间相似度低。它通过迭代更新聚类中心来达到最佳分类效果。算法流程包括选择初始中心、归类、更新中心等步骤。虽然K-means算法速度快且简单,但其结果易受初始点选择影响,可能陷入局部最优,并需要预先设定K值。
摘要由CSDN通过智能技术生成

实例:根据药品的特征对药品进行分类
实现:根据python实现的K-means聚类
1.1 归类
聚类属于非监督学习,无类别标记
1.2 K-means算法
1.Clustering中的经典算法,数据挖掘十大经典算法之一
2.算法接受参数K,然后将事先输入的n个对象划分为K个聚类以便使获得的聚类满足:同一聚类的对象 相似度比较高,而不同聚类的对象相似度较小。
3.算法思想:
以空间当中的K个点为中心进行聚类,对最靠近他们的对象归类。通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类效果。
4.算法描述
(1)适当选择C个类的初始中心
(2)在第K次迭代中,对任意一个样本,求其到C各中心的距离,将该样本归到距离最短的中心所在的类;
(3)利用均值等方法更新该类的中心值
(4)对于所有的C个聚类中心,如果利用(2)(3)的迭代算法更新之后,值保持不变,或者达到一定的迭代次数,或者分类的变化小于一个阈值,则迭代结束,否则继续迭代
5.算法流程
这里写图片描述
药品实例这里写图片描述
优点:速度快,简单
缺点:最终结果与初始点的选择相关,容易陷入局部最优,需要知道K值

代码实现:

#coding=utf-8
#简单聚类方法K-means方法的实现

import numpy as np
共识聚类、NMF聚类K-means是常用的聚类分析方法,它们在算法原理和应用场景上存在一些差异。 1. 共识聚类(Consensus Clustering):共识聚类是一种集成聚类方法,它通过多次随机抽样和聚类操作来生成多个聚类结果,然后通过计算聚类结果之间的相似性来找到稳定的聚类结构。共识聚类能够解决传统聚类方法对初始化敏感的问题,提供更可靠和稳定的聚类结果。 2. NMF聚类(Non-negative Matrix Factorization):NMF聚类是一种基于矩阵分解的聚类方法,它可以对非负矩阵进行分解,得到两个非负矩阵的乘积表示原始数据。NMF聚类假设数据具有非负性和低秩性,对数据进行低秩近似表示,从而实现聚类操作。NMF聚类在文本挖掘、图像处理等领域有广泛应用。 3. K-means聚类K-means是一种基于距离的划分聚类方法,它将数据样本划分为K个簇,每个簇具有相似的特征。K-means聚类的目标是最小化各个样本点与所属簇的质心之间的距离平方和。K-means聚类具有简单、高效的优点,但对初始质心的选取敏感,可能会收敛到局部最优解。 综上所述,共识聚类通过集成多个聚类结果来提供稳定的聚类结构,NMF聚类利用矩阵分解对数据进行低秩近似表示,而K-means聚类则是一种基于距离的划分聚类方法。它们在算法原理和应用场景上存在差异,可以根据具体问题选择合适的方法进行聚类分析。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值