机器学习之logistic回归的梯度上升算法
算法背景:
一般来说,回归模型一般不用在分类问题上,因为回归是连续型模型,而且受噪声的因素很大,但是,若需要选择,可以选择使用logisti 回归。
对数回归本质上是线性回归,只是在特征到结果的映射里加入了一层函数映射,选择g(z)=1/(1+exp(-z))作为sigmoid函数进行映射,可以将连续值映射到0-1之间。
其中g(z)函数的图像如下:可以看到,函数的取值始终在0-1之间。
对于分类问题,我们可以建立假设:
if(z >= 0.5) g(z)=1; if(z < 0.5) g(z)=0;
算法思想:
对于输出值为y={0,1}的两类分类问题,我们做出一个假设
函数g(z)即为上文提到的sigmoid函数,其导数形式为:
根据这个函数,我们可以得到对于一个样本的概率分布为: