机器学习之logistic回归的梯度上升算法

本文介绍了logistic回归在分类问题中的应用,通过sigmoid函数将连续值映射到0-1区间。利用最大似然估计,采用梯度上升算法求解最佳系数。并提供了Python代码实现,展示如何训练模型并绘制分类边界。
摘要由CSDN通过智能技术生成
机器学习之logistic回归的梯度上升算法

算法背景:

一般来说,回归模型一般不用在分类问题上,因为回归是连续型模型,而且受噪声的因素很大,但是,若需要选择,可以选择使用logisti 回归。
对数回归本质上是线性回归,只是在特征到结果的映射里加入了一层函数映射,选择g(z)=1/(1+exp(-z))作为sigmoid函数进行映射,可以将连续值映射到0-1之间。
其中g(z)函数的图像如下:可以看到,函数的取值始终在0-1之间。
对于分类问题,我们可以建立假设:
          if(z >= 0.5) g(z)=1;  if(z < 0.5) g(z)=0;


算法思想:
对于输出值为y={0,1}的两类分类问题,我们做出一个假设

函数g(z)即为上文提到的sigmoid函数,其导数形式为:
根据这个函数,我们可以得到对于一个样本的概率分布为:
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值