机器学习
文章平均质量分 67
美麗突然發生
Growning up together!
展开
-
简单聚类方法K-means方法的实现
实例:根据药品的特征对药品进行分类 实现:根据python实现的K-means聚类 1.1 归类 聚类属于非监督学习,无类别标记 1.2 K-means算法 1.Clustering中的经典算法,数据挖掘十大经典算法之一 2.算法接受参数K,然后将事先输入的n个对象划分为K个聚类以便使获得的聚类满足:同一聚类原创 2017-03-29 10:48:36 · 4742 阅读 · 0 评论 -
Hierarchical Clustering层次聚类方法实现
简单介绍: 假设有N个待聚类的样本,对于层次聚类来说,步骤: 1.(初始化)把每个样本归为一类,计算每两个类之间的距离,也就是样本与样本之间的相似度; 2.寻找各个类之间最近的两个类,将他们归为一类(类总数减少一个) 3. 重新计算新生成的这个类与各个旧类之间的相似度; 4.重复2和3直到所有的样原创 2017-03-30 16:38:32 · 2429 阅读 · 0 评论 -
机器学习之局部加权线性回归
局部加权线性回归(Locally Weighted Linear Regression)算法背景:现实生活中很多数据采用线性模型不能很好的描述,比如说房价预测的问题,直线不能很好的拟合所有的数据点,甚至存在较大的误差,我们可能采用一条类似于二次函数的曲线可以拟合的更好。但是为了解决在非线性模型里建立线性模组的问题,我们预测一点的值时,选择与这个点相近的点而不是所有的点做线性回归。基原创 2017-04-13 20:50:25 · 6008 阅读 · 2 评论 -
机器学习之梯度下降算法
机器学习之梯度下降算法算法背景:以房价问题为由:房价变化可能有多种因素比如说房屋面积,房屋位置,房间数量等:我们假设一个向量x表示输入特征:x = [x0,x1.x2.......,xn],其中n为影响房价因素的数量估计函数:其中Θ为特征参数或者学习参数,该参数决定了特征变量Xi对估计的影响,用向量形式表示为:为了使得估计值与实际原创 2017-04-14 15:14:59 · 1142 阅读 · 0 评论 -
机器学习之logistic回归的梯度上升算法
机器学习之logistic回归的梯度上升算法算法背景:一般来说,回归模型一般不用在分类问题上,因为回归是连续型模型,而且受噪声的因素很大,但是,若需要选择,可以选择使用logisti 回归。对数回归本质上是线性回归,只是在特征到结果的映射里加入了一层函数映射,选择g(z)=1/(1+exp(-z))作为sigmoid函数进行映射,可以将连续值映射到0-1之间。其中g原创 2017-04-15 11:31:30 · 9666 阅读 · 8 评论 -
关于《TensorFlow 实战Google深度学习框架》
这本书是由才云科技Caicloud发行,主要内容是熟悉tensorflow框架的基本结构以及在深度学习领域实际应用。 具体的代码参见: 1.官方: caicloud/tensorflow-tutorial: Example TensorFlow codes and Caicloud TensorFlow as a Service dev environment. https://github原创 2017-05-23 18:28:31 · 7536 阅读 · 1 评论 -
卷积神经网络的可视化
t-SNE(数据降维)可视化技术(给她一个高维数据,根据数据的结构和关系自动进行内聚) ConvNets逐渐的将不同的图片分类,我们可以将不同的图片嵌入到二维的空间,这样相似的图片就会在一起.有很多嵌入的方法,t-SNE 是很有名的一个。我们可以从ConvNet中抽取cnn codes(例如在AlexNet中是分离器前的4096维向量)代入 t-SNE 得到了二维分布的图片,图片间的距离也可以表原创 2017-05-09 15:29:25 · 9668 阅读 · 1 评论