HDF5文件介绍

本文介绍了HDF5文件在深度学习中的作用,它用于存储大量数据,提供高效的读写速度。HDF5文件包含dataset和group,类似于数组和文件夹。虽然转换为HDF5可能导致文件大小增加,但可通过压缩提高效率。在选择是否使用HDF5时,需要权衡读写速度与文件大小的需求。
摘要由CSDN通过智能技术生成

一、HDF5文件介绍

Hierarchical Data Format Version 5, HDF5: 层次性数据格式第五版

是一种存储相同类型数值的大数组的机制,适用于可被层次性组织且数据集需要被元数据标记的数据模型
常用的接口模块为 h5py
HDF5 三大要素:

hdf5 files: 能够存储两类数据对象 dataset 和 group 的容器,其操作类似 python 标准的文件操作;File 实例对象本身就是一个组,以 / 为名,是遍历文件的入口
dataset(array-like): 可类比为 Numpy 数组,每个数据集都有一个名字(name)、形状(shape) 和类型(dtype),支持切片操作
group(folder-like): 可以类比为 字典,它是一种像文件夹一样的容器;group 中可以存放 dataset 或者其他的 group,键就是组成员的名称,值就是组成员对象本身(组或者数据集)

在深度学习中,通常会使用巨量的数据或图片来训练网络,比如ImageNet上就有数百万张图片。对于如此大的数据集,如果对于每张图片都单独从硬盘读取、预处理、之后再送入网络进行训练、验证或是测试,这样效率可是太低了。如果将这些图片都放入一个文件中再进行处理,这样效率会更高。有多种数据模型和库可完成这种操作,如HDF5和TFRecord。这篇文章中会介绍如何将大量的图片存入单个HDF5文件中,以及如何将它们按batch读出来。不论数据多大,即不论数据是否大于电脑内存,该方法都是有效的。HDF5提供了工具,可用于对数据进行管理、操作、可视化、压缩和存储等。

一个HDF5文件是一种

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值