一、最速降线的问题提出
考虑如下运动
质点从一个定点运动到不在其垂直下方的任意一个点(即排除自由落体运动),整个运动过程只受重力作用,不计摩擦力,那么问质点应该沿什么样的曲线下滑,才能使得运动时间最少?
由于质点运动的曲线有无穷多种情况,怎么在这些曲线簇中找到那条使得下降时间最短的曲线?就被称之为最速降线问题,是由意大利科学家伽利略在1630年提出的。当时伽利略认为这个曲线是一个圆,可是这显然是一个错误的答案,17世纪的数学家约翰.伯努利、牛顿、莱布尼兹和伯努利家族的成员都找到了这条曲线,这条曲线又被称作最速降线
二、开始推导最速绛线方程
下面我们开始推导最速绛线方程,如下图运动过程,假设物体从原点O点开始出发,沿任意曲线运动到A点
最速绛线运动
整个运动过程只有重力做功,根据动能守护可以得到最终末速度
末速度
取物体运动过程中的任意的弧长微分
弧长微分
则物体运动的时间微分为
时间微分
设O点坐标为(x1,y1),A点坐标为(x2,y2),则物体运动的总时间T为
物体运动的总时间T
至此我们得到了物体沿任意曲线下滑的时间积分函数表达式,下面就是求解这个积分函数。但是上述积分里包含y和y'两个未知数,而y和y'都是关于x的函数,也就是说函数的自变量包含了另外两个函数,为此需要用到泛函的知识来求解
三、泛函的定义
我们一般学习的函数,均是以任意或特定R作为定义域D,通过映射法则f,得到一组值的数域,即完成数域到数域的映射关系
一般函数
当我们将定义域D扩展到一个函数集合,通过映射法则F,得到一组值的数域,即完成函数空间到数域的映射关系,我们将这种映射称之为泛函
泛函
可见泛函本质也是一个函数,其定义域是一组函数,表示函数的广义函数
则我们推导的最速降线方程,就可以表示为一个泛函,即
最速降线的泛函形式
要求解上述泛函的积分,我们需要用到变分法的思想
四、变分法的思想
我们从整个运动过程开始推理,可以经过多次试验,让物体沿不同的曲线下滑,并记录每条曲线下滑的时间,最终我们一定可以找到一个最短的下落时间,则与其对应的曲线就是最速降线