问题(一)

OLS回归问题

1、对以下式子的证明不理解:

β ^ 1 = β 1 + ∑ i = 1 n ( x i − x ‾ ) u i S S T x = β 1 + 1 S S T x ∑ i = 1 n d i u i \hat \beta_1= \beta_1 + \frac{\sum_{i=1}^n(x_i-\overline x)u_i}{SST_x}=\beta_1 +\frac{1}{SST_x}\sum_{i=1}^nd_iu_i β^1=β1+SSTxi=1n(xix)ui=β1+SSTx1i=1ndiui

证明:
β ^ 1 = ∑ i = 1 n ( x i − x ‾ ) y i ∑ i = 1 n ( x i − x ‾ ) 2          ( 1 ) \hat \beta_1=\frac{\sum_{i=1}^n(x_i-\overline x)y_i}{\sum_{i=1}^n(x_i-\overline x)^2}~~~~~~~~(1) β^1=i=1n(xix)2i=1n(xix)yi        (1)

y i = β 0 + β i x i + u i y_i=\beta_0+\beta_i x_i+u_i yi=β0+βixi+ui代入,分子变为

∑ i = 1 n ( x i − x ‾ ) β 0 + ∑ i = 1 n ( x i − x ‾ ) β 1 x i + ∑ i = 1 n ( x i − x ‾ ) u i          ( 2 ) \sum_{i=1}^n(x_i-\overline x)\beta_0+\sum_{i=1}^n(x_i-\overline x)\beta_1x_i+\sum_{i=1}^n(x_i-\overline x)u_i ~~~~~~~~(2) i=1n(xix)β0+i=1n(xix)β1xi+i=1n(xix)ui        (2)

既然 ∑ i = 1 n ( x i − x ‾ ) = 0 \sum_{i=1}^n(x_i-\overline x)=0 i=1n(xix)=0
那么 ∑ i = 1 n ( x i − x ‾ ) β 1 x i = ∑ i = 1 n ( x i − x ‾ ) 2 β 1 \sum_{i=1}^n(x_i-\overline x)\beta_1x_i=\sum_{i=1}^n(x_i-\overline x)^2\beta_1 i=1n(xix)β1xi=i=1n(xix)2β1

前面的(2)式就可以约掉很多项,代到(1)式中,变成

β ^ 1 = β 1 + ∑ i = 1 n ( x i − x ‾ ) u i S S T x = β 1 + 1 S S T x ∑ i = 1 n d i u i \hat \beta_1= \beta_1 + \frac{\sum_{i=1}^n(x_i-\overline x)u_i}{SST_x}=\beta_1 +\frac{1}{SST_x}\sum_{i=1}^nd_iu_i β^1=β1+SSTxi=1n(xix)ui=β1+SSTx1i=1ndiui

  • 我的问题是既然 ∑ i = 1 n ( x i − x ‾ ) = 0 \sum_{i=1}^n(x_i-\overline x)=0 i=1n(xix)=0,为什么(2)式没有直接等于0?
  • 答: (2)式中只有第一项等于零,后面两项都不等于零,所以消掉的只是第一项。

2、如何证明
对于 β 1 , \beta_1, β1,

V a r ( β ^ 1 ) = σ S S T x Var(\hat \beta_1)=\frac{\sigma}{SST_x} Var(β^1)=SSTxσ

β 1 \beta_1 β1是一个常数,

V a r ( β ^ 1 ) = ( 1 S S T x ) 2 V a r ( ∑ i = 1 n d i u i ) = ( 1 S S T x ) 2 ( ∑ i = 1 n d i 2 σ 2 ) = σ 2 S S T x Var(\hat \beta_1)=(\frac{1}{SST_x})^2Var(\sum_{i=1}^nd_iu_i)=(\frac{1}{SST_x})^2(\sum_{i=1}^nd_i^2\sigma^2)=\frac{\sigma^2}{SST_x} Var(β^1)=(SSTx1)2Var(i=1ndiui)=(SSTx1)2(i=1ndi2σ2)=SSTxσ2

但是以下 β 0 \beta_0 β0的公式不知道如何解释

V a r ( β ^ 0 ) = σ 2 S S T x × n − 1 ∑ i = 1 n x i 2 Var(\hat \beta_0)=\frac{\sigma^2}{SST_x}\times n^{-1}\sum_{i=1}^nx_i^2 Var(β^0)=SSTxσ2×n1i=1nxi2

其 中 d i = ( x i − x ‾ ) ,      S S T x = ∑ i = 1 n ( x i − x ‾ ) 2 其中 d_i=(x_i-\overline x),~~~~SST_x=\sum_{i=1}^n(x_i-\overline x)^2 di=(xix),    SSTx=i=1n(xix)2

  • 如何证明 V a r ( β ^ 0 ) Var(\hat \beta_0) Var(β^0)的式子?
    在这里插入图片描述
    (ps:弄这道前先弄第11题以及第12题。)

3、为什么 C o v ( u i , u ‾ ) = 1 n V a r ( u i ) Cov(u_i,\overline u)=\frac{1}{n}Var(u_i) Cov(ui,u)=n1Var(ui)


  • 在这里插入图片描述

4、为什么 V a r ( ∑ i = 1 n d i u i ) = S S T x × σ 2 , 其 中 d i = x i − x ‾ Var(\sum_{i=1}^nd_iu_i)=SST_x\times \sigma^2,其中d_i=x_i-\overline x Var(i=1ndiui)=SSTx×σ2di=xix

  • -
    因为di是非随机的,所以di和求和符号都可以提出来,提出来要加上平方,就变成了SSTx。而ui的方差一直都是 σ 2 \sigma^2 σ2 。我想问这里“非随机的”,是什么意思?
    答:非随机的意思是,把只含有x的项看做常数,也就是认为只含有x的项是给定的,不是随机变量。

5 、 同 方 差 假 设 在 什 么 时 候 用 ? 5、同方差假设在什么时候用? 5

  • -
    同方差假设的提出是为了得到OLS估计量的方差,所以只要需要用到OLS估计量的方差的情况,都要假定同方差假设是成立的。

6 、 课 后 习 题 中 有 一 道 题 , 6、课后习题中有一道题, 6
β ~ 1 = β 0 ( ∑ i = 1 n x i ) / ( ∑ i = 1 n x i 2 ) + β 1 + ( ∑ i = 1 n x i u i ) / ( ∑ i = 1 n x i 2 ) \widetilde \beta_1=\beta_0(\sum_{i=1}^nx_i)/(\sum_{i=1}^nx_i^2)+\beta_1+(\sum_{i=1}^nx_iu_i)/(\sum_{i=1}^nx_i^2) β 1=β0(i=1nxi)/(i=1nxi2)+β1+(i=1nxiui)/(i=1nxi2)

V a r ( β ~ 1 ) = ( ∑ i = 1 n x i 2 ) − 2 V a r ( ∑ i = 1 n x i u i ) = σ 2 / ( ∑ i = 1 n x i 2 ) − 2 Var(\widetilde \beta_1)=(\sum_{i=1}^nx_i^2)^{-2}Var(\sum_{i=1}^nx_iu_i)=\sigma^2/(\sum_{i=1}^nx_i^2)^{-2} Var(β 1)=(i=1nxi2)2Var(i=1nxiui)=σ2/(i=1nxi2)2

我想问为什么方差公式中只保留了有 u i u_i ui的这一项?

  • -
    在这里插入图片描述
    7、课本中 β 1 \beta_1 β1有两个公式,

β ^ 1 = ∑ i = 1 n ( x i − x ‾ ) ( y i − y ‾ ) ∑ i = 1 n ( x i − x ‾ ) \hat \beta_1=\frac{\sum_{i=1}^n(x_i-\overline x)(y_i-\overline y)}{\sum_{i=1}^n(x_i-\overline x)} β^1=i=1n(xix)i=1n(xix)(yiy)

β ^ 1 = ∑ i = 1 n ( x i − x ‾ ) y i ∑ i = 1 n ( x i − x ‾ ) \hat \beta_1=\frac{\sum_{i=1}^n(x_i-\overline x)y_i}{\sum_{i=1}^n(x_i-\overline x)} β^1=i=1n(xix)i=1n(xix)yi

为什么可以这样变动?

  • -
    在这里插入图片描述

8、 C o v ( β ^ 1 − β 1 , u ‾ ) = E [ ( β ^ 1 − β 1 ) u ‾ ] Cov(\hat \beta_1-\beta_1,\overline u)=E[(\hat \beta_1-\beta_1)\overline u] Cov(β^1β1,u)=E[(β^1β1)u]是怎么算的?

  • -
    在这里插入图片描述
    9、为什么 V a r ( u ‾ ) = 1 n σ 2 Var(\overline u)=\frac{1}{n} \sigma^2 Var(u)=n1σ2
  • -
    在这里插入图片描述
    在这里插入图片描述

10、为什么 E ( u i u ‾ ) = E ( u i 2 n ) = σ n E(u_i\overline u)=E(\frac{u_i^2}{n})=\frac{\sigma}{n} E(uiu)=E(nui2)=nσ

  • -
    在这里插入图片描述

11、对于OLS回归:
β ^ 0 = y ‾ − β ^ x ‾ \hat \beta_0 = \overline y-\hat \beta \overline x β^0=yβ^x

y ‾ = β 0 + β 1 x ‾ + u ‾ \overline y=\beta_0+\beta_1 \overline x+\overline u y=β0+β1x+u

β ^ 0 − ( β 0 + β 1 x ‾ + u ‾ ) − β ^ 1 x ‾ = β 0 + u ‾ − ( β ^ 1 − β 1 ) x ‾ \hat \beta_0-(\beta_0+\beta_1\overline x+\overline u)-\hat \beta_1 \overline x=\beta_0+\overline u-(\hat \beta_1-\beta_1)\overline x β^0(β0+β1x+u)β^1x=β0+u(β^1β1)x

V a r ( β ^ 0 ) Var(\hat \beta_0) Var(β^0)

= V a r ( u ‾ ) + V a r ( β ^ 1 ) x ‾ 2 =Var(\overline u)+Var(\hat \beta_1)\overline x^2 =Var(u)+Var(β^1)x2

= σ 2 / n + ( σ 2 / S S T x ) x ‾ 2 =\sigma^2/n+(\sigma^2/SST_x)\overline x^2 =σ2/n+(σ2/SSTx)x2

= σ 2 / n + σ 2 x ‾ 2 / S S T x =\sigma^2/n+\sigma^2\overline x^2/SST_x =σ2/n+σ2x2/SSTx

我想问的是这里为什么 β 0 以 及 β 1 不 用 管 , 而 u ‾ 要 管 \beta_0以及\beta_1不用管,而\overline u要管 β0β1u

本来觉得 β 0 、 β 1 \beta_0、\beta_1 β0β1是总体中的真值,是常数所以计算方差的时候不要考虑进去。
但是 u ‾ \overline u u 也是常数。

  • -
    在这里插入图片描述

12、还是一个计算问题,为什么以下式子成立?
S S T x / n = n − 1 ∑ i = 1 n x i 2 − ( x ‾ ) 2 SST_x/n=n^{-1}\sum_{i=1}^nx_i^2-(\overline x)^2 SSTx/n=n1i=1nxi2(x)2

这个式子解释清楚了就可以解答第二题:

V a r ( β ~ 0 ) Var(\tilde \beta_0) Var(β~0)

= σ 2 [ ( S S T x / n ) + x ‾ 2 ) / S S T x =\sigma^2[(SST_x/n)+\overline x^2)/SST_x =σ2[(SSTx/n)+x2)/SSTx

= σ 2 [ ( n − 1 ∑ i = 1 n x i 2 − x ‾ ) + x ‾ 2 ) / S S T x =\sigma^2[(n^{-1}\sum_{i=1}^nx_i^2-\overline x)+\overline x^2)/SST_x =σ2[(n1i=1nxi2x)+x2)/SSTx

= σ 2 S S T x × n − 1 ∑ i = 1 n x i 2 =\frac{\sigma^2}{SST_x}\times n^{-1}\sum_{i=1}^nx_i^2 =SSTxσ2×n1i=1nxi2
在这里插入图片描述
(这个我回去拿书就放上去)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值