OLS回归问题
1、对以下式子的证明不理解:
β ^ 1 = β 1 + ∑ i = 1 n ( x i − x ‾ ) u i S S T x = β 1 + 1 S S T x ∑ i = 1 n d i u i \hat \beta_1= \beta_1 + \frac{\sum_{i=1}^n(x_i-\overline x)u_i}{SST_x}=\beta_1 +\frac{1}{SST_x}\sum_{i=1}^nd_iu_i β^1=β1+SSTx∑i=1n(xi−x)ui=β1+SSTx1∑i=1ndiui
证明:
β
^
1
=
∑
i
=
1
n
(
x
i
−
x
‾
)
y
i
∑
i
=
1
n
(
x
i
−
x
‾
)
2
(
1
)
\hat \beta_1=\frac{\sum_{i=1}^n(x_i-\overline x)y_i}{\sum_{i=1}^n(x_i-\overline x)^2}~~~~~~~~(1)
β^1=∑i=1n(xi−x)2∑i=1n(xi−x)yi (1)
将 y i = β 0 + β i x i + u i y_i=\beta_0+\beta_i x_i+u_i yi=β0+βixi+ui代入,分子变为
∑ i = 1 n ( x i − x ‾ ) β 0 + ∑ i = 1 n ( x i − x ‾ ) β 1 x i + ∑ i = 1 n ( x i − x ‾ ) u i ( 2 ) \sum_{i=1}^n(x_i-\overline x)\beta_0+\sum_{i=1}^n(x_i-\overline x)\beta_1x_i+\sum_{i=1}^n(x_i-\overline x)u_i ~~~~~~~~(2) ∑i=1n(xi−x)β0+∑i=1n(xi−x)β1xi+∑i=1n(xi−x)ui (2)
既然
∑
i
=
1
n
(
x
i
−
x
‾
)
=
0
\sum_{i=1}^n(x_i-\overline x)=0
∑i=1n(xi−x)=0,
那么
∑
i
=
1
n
(
x
i
−
x
‾
)
β
1
x
i
=
∑
i
=
1
n
(
x
i
−
x
‾
)
2
β
1
\sum_{i=1}^n(x_i-\overline x)\beta_1x_i=\sum_{i=1}^n(x_i-\overline x)^2\beta_1
∑i=1n(xi−x)β1xi=∑i=1n(xi−x)2β1
前面的(2)式就可以约掉很多项,代到(1)式中,变成
β ^ 1 = β 1 + ∑ i = 1 n ( x i − x ‾ ) u i S S T x = β 1 + 1 S S T x ∑ i = 1 n d i u i \hat \beta_1= \beta_1 + \frac{\sum_{i=1}^n(x_i-\overline x)u_i}{SST_x}=\beta_1 +\frac{1}{SST_x}\sum_{i=1}^nd_iu_i β^1=β1+SSTx∑i=1n(xi−x)ui=β1+SSTx1∑i=1ndiui
- 我的问题是既然 ∑ i = 1 n ( x i − x ‾ ) = 0 \sum_{i=1}^n(x_i-\overline x)=0 ∑i=1n(xi−x)=0,为什么(2)式没有直接等于0?
- 答: (2)式中只有第一项等于零,后面两项都不等于零,所以消掉的只是第一项。
2、如何证明
对于
β
1
,
\beta_1,
β1,
V a r ( β ^ 1 ) = σ S S T x Var(\hat \beta_1)=\frac{\sigma}{SST_x} Var(β^1)=SSTxσ
即 β 1 \beta_1 β1是一个常数,
V a r ( β ^ 1 ) = ( 1 S S T x ) 2 V a r ( ∑ i = 1 n d i u i ) = ( 1 S S T x ) 2 ( ∑ i = 1 n d i 2 σ 2 ) = σ 2 S S T x Var(\hat \beta_1)=(\frac{1}{SST_x})^2Var(\sum_{i=1}^nd_iu_i)=(\frac{1}{SST_x})^2(\sum_{i=1}^nd_i^2\sigma^2)=\frac{\sigma^2}{SST_x} Var(β^1)=(SSTx1)2Var(∑i=1ndiui)=(SSTx1)2(∑i=1ndi2σ2)=SSTxσ2
但是以下 β 0 \beta_0 β0的公式不知道如何解释
V a r ( β ^ 0 ) = σ 2 S S T x × n − 1 ∑ i = 1 n x i 2 Var(\hat \beta_0)=\frac{\sigma^2}{SST_x}\times n^{-1}\sum_{i=1}^nx_i^2 Var(β^0)=SSTxσ2×n−1∑i=1nxi2
其 中 d i = ( x i − x ‾ ) , S S T x = ∑ i = 1 n ( x i − x ‾ ) 2 其中 d_i=(x_i-\overline x),~~~~SST_x=\sum_{i=1}^n(x_i-\overline x)^2 其中di=(xi−x), SSTx=∑i=1n(xi−x)2
- 如何证明
V
a
r
(
β
^
0
)
Var(\hat \beta_0)
Var(β^0)的式子?
(ps:弄这道前先弄第11题以及第12题。)
3、为什么 C o v ( u i , u ‾ ) = 1 n V a r ( u i ) Cov(u_i,\overline u)=\frac{1}{n}Var(u_i) Cov(ui,u)=n1Var(ui)?
- —
4、为什么 V a r ( ∑ i = 1 n d i u i ) = S S T x × σ 2 , 其 中 d i = x i − x ‾ Var(\sum_{i=1}^nd_iu_i)=SST_x\times \sigma^2,其中d_i=x_i-\overline x Var(∑i=1ndiui)=SSTx×σ2,其中di=xi−x
- -
因为di是非随机的,所以di和求和符号都可以提出来,提出来要加上平方,就变成了SSTx。而ui的方差一直都是 σ 2 \sigma^2 σ2 。我想问这里“非随机的”
,是什么意思?
答:非随机的意思是,把只含有x的项看做常数,也就是认为只含有x的项是给定的,不是随机变量。
5 、 同 方 差 假 设 在 什 么 时 候 用 ? 5、同方差假设在什么时候用? 5、同方差假设在什么时候用?
- -
同方差假设的提出是为了得到OLS估计量的方差,所以只要需要用到OLS估计量的方差的情况,都要假定同方差假设是成立的。
6
、
课
后
习
题
中
有
一
道
题
,
6、课后习题中有一道题,
6、课后习题中有一道题,
β
~
1
=
β
0
(
∑
i
=
1
n
x
i
)
/
(
∑
i
=
1
n
x
i
2
)
+
β
1
+
(
∑
i
=
1
n
x
i
u
i
)
/
(
∑
i
=
1
n
x
i
2
)
\widetilde \beta_1=\beta_0(\sum_{i=1}^nx_i)/(\sum_{i=1}^nx_i^2)+\beta_1+(\sum_{i=1}^nx_iu_i)/(\sum_{i=1}^nx_i^2)
β
1=β0(∑i=1nxi)/(∑i=1nxi2)+β1+(∑i=1nxiui)/(∑i=1nxi2)
说 V a r ( β ~ 1 ) = ( ∑ i = 1 n x i 2 ) − 2 V a r ( ∑ i = 1 n x i u i ) = σ 2 / ( ∑ i = 1 n x i 2 ) − 2 Var(\widetilde \beta_1)=(\sum_{i=1}^nx_i^2)^{-2}Var(\sum_{i=1}^nx_iu_i)=\sigma^2/(\sum_{i=1}^nx_i^2)^{-2} Var(β 1)=(∑i=1nxi2)−2Var(∑i=1nxiui)=σ2/(∑i=1nxi2)−2
我想问为什么方差公式中只保留了有 u i u_i ui的这一项?
- -
7、课本中 β 1 \beta_1 β1有两个公式,
β ^ 1 = ∑ i = 1 n ( x i − x ‾ ) ( y i − y ‾ ) ∑ i = 1 n ( x i − x ‾ ) \hat \beta_1=\frac{\sum_{i=1}^n(x_i-\overline x)(y_i-\overline y)}{\sum_{i=1}^n(x_i-\overline x)} β^1=∑i=1n(xi−x)∑i=1n(xi−x)(yi−y)
β ^ 1 = ∑ i = 1 n ( x i − x ‾ ) y i ∑ i = 1 n ( x i − x ‾ ) \hat \beta_1=\frac{\sum_{i=1}^n(x_i-\overline x)y_i}{\sum_{i=1}^n(x_i-\overline x)} β^1=∑i=1n(xi−x)∑i=1n(xi−x)yi
为什么可以这样变动?
- -
8、 C o v ( β ^ 1 − β 1 , u ‾ ) = E [ ( β ^ 1 − β 1 ) u ‾ ] Cov(\hat \beta_1-\beta_1,\overline u)=E[(\hat \beta_1-\beta_1)\overline u] Cov(β^1−β1,u)=E[(β^1−β1)u]是怎么算的?
- -
9、为什么 V a r ( u ‾ ) = 1 n σ 2 Var(\overline u)=\frac{1}{n} \sigma^2 Var(u)=n1σ2? - -
10、为什么 E ( u i u ‾ ) = E ( u i 2 n ) = σ n E(u_i\overline u)=E(\frac{u_i^2}{n})=\frac{\sigma}{n} E(uiu)=E(nui2)=nσ?
- -
11、对于OLS回归:
β
^
0
=
y
‾
−
β
^
x
‾
\hat \beta_0 = \overline y-\hat \beta \overline x
β^0=y−β^x
y ‾ = β 0 + β 1 x ‾ + u ‾ \overline y=\beta_0+\beta_1 \overline x+\overline u y=β0+β1x+u
则 β ^ 0 − ( β 0 + β 1 x ‾ + u ‾ ) − β ^ 1 x ‾ = β 0 + u ‾ − ( β ^ 1 − β 1 ) x ‾ \hat \beta_0-(\beta_0+\beta_1\overline x+\overline u)-\hat \beta_1 \overline x=\beta_0+\overline u-(\hat \beta_1-\beta_1)\overline x β^0−(β0+β1x+u)−β^1x=β0+u−(β^1−β1)x
V a r ( β ^ 0 ) Var(\hat \beta_0) Var(β^0)
= V a r ( u ‾ ) + V a r ( β ^ 1 ) x ‾ 2 =Var(\overline u)+Var(\hat \beta_1)\overline x^2 =Var(u)+Var(β^1)x2
= σ 2 / n + ( σ 2 / S S T x ) x ‾ 2 =\sigma^2/n+(\sigma^2/SST_x)\overline x^2 =σ2/n+(σ2/SSTx)x2
= σ 2 / n + σ 2 x ‾ 2 / S S T x =\sigma^2/n+\sigma^2\overline x^2/SST_x =σ2/n+σ2x2/SSTx
我想问的是这里为什么 β 0 以 及 β 1 不 用 管 , 而 u ‾ 要 管 \beta_0以及\beta_1不用管,而\overline u要管 β0以及β1不用管,而u要管?
本来觉得
β
0
、
β
1
\beta_0、\beta_1
β0、β1是总体中的真值,是常数所以计算方差的时候不要考虑进去。
但是
u
‾
\overline u
u 也是常数。
- -
12、还是一个计算问题,为什么以下式子成立?
S
S
T
x
/
n
=
n
−
1
∑
i
=
1
n
x
i
2
−
(
x
‾
)
2
SST_x/n=n^{-1}\sum_{i=1}^nx_i^2-(\overline x)^2
SSTx/n=n−1∑i=1nxi2−(x)2
这个式子解释清楚了就可以解答第二题:
V a r ( β ~ 0 ) Var(\tilde \beta_0) Var(β~0)
= σ 2 [ ( S S T x / n ) + x ‾ 2 ) / S S T x =\sigma^2[(SST_x/n)+\overline x^2)/SST_x =σ2[(SSTx/n)+x2)/SSTx
= σ 2 [ ( n − 1 ∑ i = 1 n x i 2 − x ‾ ) + x ‾ 2 ) / S S T x =\sigma^2[(n^{-1}\sum_{i=1}^nx_i^2-\overline x)+\overline x^2)/SST_x =σ2[(n−1∑i=1nxi2−x)+x2)/SSTx
=
σ
2
S
S
T
x
×
n
−
1
∑
i
=
1
n
x
i
2
=\frac{\sigma^2}{SST_x}\times n^{-1}\sum_{i=1}^nx_i^2
=SSTxσ2×n−1∑i=1nxi2
(这个我回去拿书就放上去)