应用统计学第十周作业(OSL最小二乘、Excel处理数据)

1.
(1)

超市的广告费支出和销售额的关系
在这里插入图片描述
R Square = 0.69,相关系数 = 0.83,x和y还算是有比较强的线性关系。
SSR = 691.72,SSE = 310.28,F检验的结果为11.147,对应的p-value = 0.02,F检验通过。

t检验的结果为3.34,对应的p-value= 0.02,t检验通过。

(2)

啤酒的广告费和销售量的关系
在这里插入图片描述
R Square = 0.78,相关系数 = 0.885,x和y有比较强的线性关系。
SSR = 735.49,SSE = 202.33,F检验的结果为29,对应p-value = 0.00065,F检验通过。

t检验的结果为5.39,t检验通过。

2.

在这里插入图片描述
在这里插入图片描述

证明:

(1)

已 知 b 0 = y ˉ − b 1 x ˉ , 由 y ˉ 是 y i 的 线 性 组 合 , 已 证 b 1 是 y i 的 线 性 组 合 , x ˉ 是 固 定 设 计 , 所 以 b 0 显 然 是 y i 的 线 性 组 合 。 已知b_0 = \bar{y} - b_1\bar{x},\\ 由\bar{y}是y_i的线性组合,已证b_1是y_i的线性组合,\\\bar{x}是固定设计,所以b_0显然是y_i的线性组合。 b0=yˉb1xˉ,yˉyi线b1yi线xˉb0yi线

(2)

首 先 证 明 E ( b 1 ) = β 1 证 明 : 已 知 b 1 = ∑ ( x i − x ˉ ) ( y i − y ˉ ) ∑ ( x i − x ˉ ) 2 = ∑ ( x i − x ˉ ) ∑ ( x i − x ˉ ) 2 y i = ∑ k i y i E ( b 1 ) = E ( ∑ k i ( β 0 + β 1 x i ) ) = β 0 E ( ∑ k i ) + β 1 E ( ∑ k i x i ) = β 0 ⋅ 0 + β 1 ⋅ 1 = β 1 在 此 基 础 上 E ( b 0 ) = E ( y ˉ ) − x ˉ E ( b 1 ) = β 0 + β 1 x ˉ − x ˉ β 1 = β 0 首先证明E(b_1) = \beta_1\\ 证明:已知b_1 = \frac{\sum(x_i-\bar{x})(y_i-\bar{y})}{\sum(x_i-\bar{x})^2}\\= \sum\frac{(x_i-\bar{x})}{\sum(x_i-\bar{x})^2}y_i = \sum k_iy_i\\ E(b_1) =E(\sum k_i(\beta_0+\beta_1x_i)) \\ = \beta_0E(\sum k_i)+\beta_1E(\sum k_ix_i)\\ = \beta_0·0+\beta_1·1 = \beta_1\\ 在此基础上E(b_0) = E(\bar{y})-\bar{x}E(b_1)\\ = \beta_0+\beta_1\bar{x}-\bar{x}\beta_1=\beta_0 E(b1)=β1b1=(xixˉ)2(xixˉ)(yiyˉ)=(xixˉ)2(xixˉ)yi=kiyiE(b1)=E(ki(β0+β1xi))=β0E(ki)+β1E(kixi)=β00+β11=β1E(b0)=E(yˉ)xˉE(b1)=β0+β1xˉxˉβ1=β0

(3)

已 证 V a r ( b 1 ) = σ 2 ∑ i = 1 n ( x i − x ˉ ) 2 已 知 b 0 = y ˉ − b 1 x ˉ 所 以 V a r ( b 0 ) = V a r ( y ˉ − b 1 x ˉ ) = V a r ( y ˉ ) + x ˉ 2 V a r ( b 1 ) = σ 2 n + x ˉ 2 σ 2 ∑ i = 1 n ( x i − x ˉ ) 2 = σ 2 ( 1 n + x ˉ 2 ∑ i = 1 n ( x i − x ˉ ) 2 ) 已证Var(b_1) = \frac{\sigma^2}{\sum_{i=1}^n(x_i-\bar{x})^2}\\ 已知b_0 = \bar{y} - b_1\bar{x}\\ 所以Var(b_0) = Var(\bar{y} - b_1\bar{x})\\= Var(\bar{y})+\bar{x}^2Var(b_1)\\ = \frac{\sigma^2}{n}+\frac{\bar{x}^2\sigma^2}{\sum_{i=1}^n(x_i-\bar{x})^2}\\ = \sigma^2(\frac{1}{n}+\frac{\bar{x}^2}{\sum_{i=1}^n(x_i-\bar{x})^2}) Var(b1)=i=1n(xixˉ)2σ2b0=yˉb1xˉVar(b0)=Var(yˉb1xˉ)=Var(yˉ)+xˉ2Var(b1)=nσ2+i=1n(xixˉ)2xˉ2σ2=σ2(n1+i=1n(xixˉ)2xˉ2)

3.

在这里插入图片描述
证明:
假 设 存 在 线 性 无 偏 统 计 量 p 1 = ∑ c i y i , 令 d 1 = p 1 − b 1 = ∑ ( c i − k i ) y i , 则 p 1 = b 1 + d 1 只 需 证 明 V a r ( p 1 ) ≥ V a r ( b 1 ) 即 可 。 假设存在线性无偏统计量p_1 =\sum c_iy_i,\\ 令d_1 = p_1-b_1 = \sum(c_i-k_i)y_i,则p_1 = b_1+d_1\\ 只需证明Var(p_1)\geq Var(b_1)即可。 线p1=ciyi,d1=p1b1=(ciki)yi,p1=b1+d1Var(p1)Var(b1)

V a r ( p 1 ) = C o v ( p 1 , p 1 ) = C o v ( b 1 + d 1 , b 1 + d 1 ) = V a r ( b 1 ) + V a r ( d 1 ) + 2 C o v ( b 1 , d 1 ) V a r ( d 1 ) 显 然 不 小 于 0 C o v ( b 1 , d 1 ) = C o v ( ∑ ( c i − k i ) y i , ∑ k i y i ) = 0 所 以 V a r ( p 1 ) ≥ V a r ( b 1 ) 因 此 , 任 意 线 性 无 偏 估 计 的 方 差 都 不 小 于 最 小 二 乘 得 到 的 方 差 , 即 O S L 估 计 量 b 1 有 最 小 的 方 差 。 Var(p_1) = Cov(p_1,p_1) = Cov(b_1+d_1,b_1+d_1)\\ = Var(b_1)+Var(d_1)+2Cov(b_1,d_1)\\ Var(d_1)显然不小于0\\ Cov(b_1,d_1) = Cov(\sum(c_i-k_i)y_i,\sum k_iy_i)=0\\ 所以Var(p_1)\geq Var(b_1)\\ 因此,任意线性无偏估计的方差都不小于最小二乘得到的方差,即OSL估计量b_1有最小的方差。 Var(p1)=Cov(p1,p1)=Cov(b1+d1,b1+d1)=Var(b1)+Var(d1)+2Cov(b1,d1)Var(d1)0Cov(b1,d1)=Cov((ciki)yi,kiyi)=0Var(p1)Var(b1)线OSLb1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Cachel wood

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值