HDU 5793 A Boring Question

There are an equation.
0k1,k2,kmn1j<m(kj+1kj)%1000000007=?
We define that  (kj+1kj)=kj+1!kj!(kj+1kj)!  . And  (kj+1kj)=0  while  kj+1<kj .
You have to get the answer for each  n  and  m  that given to you.
For example,if  n=1 , m=3 ,
When  k1=0,k2=0,k3=0,(k2k1)(k3k2)=1 ;
When k1=0,k2=1,k3=0,(k2k1)(k3k2)=0 ;
When k1=1,k2=0,k3=0,(k2k1)(k3k2)=0 ;
When k1=1,k2=1,k3=0,(k2k1)(k3k2)=0 ;
When k1=0,k2=0,k3=1,(k2k1)(k3k2)=1 ;
When k1=0,k2=1,k3=1,(k2k1)(k3k2)=1 ;
When k1=1,k2=0,k3=1,(k2k1)(k3k2)=0 ;
When k1=1,k2=1,k3=1,(k2k1)(k3k2)=1 .
So the answer is 4.
 

Input
The first line of the input contains the only integer  T , (1T10000)
Then  T  lines follow,the i-th line contains two integers  n , m , (0n109,2m109)
 

Output
For each  n  and  m ,output the answer in a single line.
 

Sample Input
  
  
2 1 2 2 3
 

Sample Output
  
  
3 13
 

Author
UESTC
 

Source
 

Recommend
wange2014


题意:

0k1,k2...kmn1j<m(kj+1kj)mod1000000007

题解:

    这个题只是看上去吓人而已… 
    比赛的时候大部分都是找规律过的,后来看官方题解才茅塞顿开。 
    首先可以分析出来:这个和要是不为0,序列k必须非减,所以我们考虑非减的情况就行了。 
    接下来开始化简: 

0k1,k2...kmn1j<m(kj+1kj)=kmnkm1km...k1=0k2(k2k1)(k3k2)...(kmkm1)

    注意到后面的积可以分别提到和式的前面。 
kmnkm1km(kmkm1)km2km1(km1km2)...k1=0k2(k2k1)

    这时,我们发现最里面的一项就是 2k2 ,所以有: 
kmnkm1km(kmkm1)km2km1(km1km2)...k2k3(k3k2)2k2

    这时我们又发现此时的最后一项又可以由二项式展开来化简: 
k2k3(k3k2)2k2=(2+1)k3=3k3

    这样一直进行化简,最后可以得到: 
kmnkm1km(kmkm1)(m1)km1=kmnmkm

    这样在最后就是一个等比数列求和了。 
    最终结果: 
ans=mn+11m1
代码:

#include<iostream>
#include<algorithm>
using namespace std;
#define ll long long
const int mod = 1e9 + 7;

ll quickmod(ll a,ll b){
    ll ans=1;
    while(b){
        if(b&1) ans=ans*a%mod;
        a=a*a%mod;
        b/=2;
    }
    return ans;
}

void exgcd(ll a,ll b,ll &x,ll &y){
    if(!b) {
        x=1,y=0;
        return ;
    }else {
        exgcd(b,a%b,y,x);
        y-=a/b*x;
    }
}

int main(){
    ll t,m,n;
    cin>>t;
    while(t--){
        cin>>n>>m;
        ///cout<<(quickmod(m,n+1)-1)*quickmod(m-1,mod-2)%mod<<endl;
        ll x,y;
        exgcd(m-1,mod,x,y);
        x=(x+mod)%mod;
        cout<<(quickmod(m,n+1)-1)*x%mod<<endl;
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值