逻辑回归与二分类

1 逻辑回归的应用场景
    广告点击率 是否会被点击
    是否为垃圾邮件
    是否患病
    是否为金融诈骗
    是否为虚假账号
    正例 / 反例
2 逻辑回归的原理
    线型回归的输出 就是 逻辑回归 的 输入
    激活函数
        sigmoid函数 [0, 1]
        1/(1 + e^(-x))
    假设函数/线性模型
        1/(1 + e^(-(w1x1 + w2x2 + w3x3 + …… + wnxn + b)))
    损失函数
        (y_predict - y_true)平方和/总数
        逻辑回归的真实值/预测值 是否属于某个类别
        对数似然损失
        log 2 x
    优化损失
        梯度下降
3 案例:癌症分类预测-良/恶性乳腺癌肿瘤预测
    恶性 - 正例
    流程分析:
        1)获取数据
            读取的时候加上names
        2)数据处理
            处理缺失值
        3)数据集划分
        4)特征工程:
            无量纲化处理-标准化
        5)逻辑回归预估器
        6)模型评估
真的患癌症的,能够被检查出来的概率 - 召回率
4 分类的评估方法
    1 精确率与召回率
        1 混淆矩阵
            TP = True Possitive
            FN = False Negative
        2 精确率(Precision)与召回率(Recall)
            精确率
            召回率 查得全不全
            工厂 质量检测 次品 召回率
        3 F1-score 模型的稳健型
   总共有100个人,如果99个样本癌症,1个样本非癌症 - 样本不均衡
   不管怎样我全都预测正例(默认癌症为正例) - 不负责任的模型
       准确率:99%
       召回率:99/99 = 100%
       精确率:99%
       F1-score: 2*99%/ 199% = 99.497%
       AUC:0.5
            TPR = 100%
            FPR = 1 / 1 = 100%
   2 ROC曲线与AUC指标
        1 知道TPR与FPR
            TPR = TP / (TP + FN) - 召回率
                所有真实类别为1的样本中,预测类别为1的比例
            FPR = FP / (FP + TN)
                所有真实类别为0的样本中,预测类别为1的比例

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值