【初阶数据结构】时间复杂度和空间复杂度(超有趣+超详细)

前言

作为一位程序员,一颗强有力的好胜心和对知识充满渴望的眼神是必不可少的。如果你还拥有一头秀发,那更是程序员界中的佼佼者(开玩笑)😊。

那假如有一天,保罗作为一名程序员,要与他的好朋友罗宾比较算法的优劣,然而罗宾是一位氪金玩家,电脑的配置出奇的高。此时,保罗写了一个快速排序的算法,而罗宾写了一个冒泡排序的算法。它们两个各自用同一组测试案例在自己的电脑跑,不出所料,罗宾的电脑先完成了任务。

难道这代表罗宾的算法比保罗的算法好吗?本文就是来探讨:如何判断一个算法的好坏

车速很快,别忘了系安全带哦!
哈哈哈

1. 算法效率

如果仅凭完成任务的速度,保罗肯定是不服气的。因为罗宾是个氪金玩家,他的电脑性能远远高于保罗的。

1.1 如何衡量一个算法的好坏

如何衡量一个算法的好坏,是代码量越少还是执行的速度越快来决定呢?
看一下斐波那契数列:

int Fib(int n)
{
	if(n < 3)
	{
		return 1;
	}
	return Fib(n-1) + Fib(n-2);
}

斐波那契数列的递归代码十分简洁,当时它真的好吗?那应该如何衡量其好坏呢?

大胆尝试:大家可以试试给上述形参传入一个50,看看你们的电脑多久能运行出结果。

1.2 算法的复杂度

算法的编写可执行程序后,运行时需要耗费一定的时间资源和空间(内存)资源。因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量,也就是时间复杂度和空间复杂度

时间复杂度主要是衡量一个算法的运行快慢,而空间复杂度主是衡量一个算法在运行时所需要的额外空间。

那罗宾的运行算法的效率很快啊,那能不能说罗宾的算法时间复杂度要比保罗算法的时间复杂要低呢?时间复杂度又是如何计算的呢?

2. 时间复杂度

2.1 时间复杂度的定义

时间复杂度的定义:在计算机科学中,算法的是时间复杂度是一个函数(这里的函数是指数学的那个函数),它定量的描述了一个算法的运行时间。

一个算法执行所耗费的时间,从理论上来讲,是不可能算得出来的,只有把你的程序放在电脑上跑起来,才能知道。但是每个算法都要进行上机测试,这样太麻烦了,而且我们每个算法都需要上机测试吗?所以这样就诞生出了时间复杂度的分析方法。

时间算法复杂度的分析方法(重点):一个算法所花费的时间与其中语句的执行次数成正比,算法中的基本操作的执行次数,为算法的时间复杂度。 也就是说,只要我们能够找到某条语句与问题规模N的函数关系,就能够算出该算法的时间复杂度。

下面给大家一个例子,感受时间复杂度的计算:

// 请计算一下Func1中++count语句总共执行了多少次?
void Func1(int N)
{
	int count = 0;
	for (int i = 0; i < N ; ++ i)
	{
		for (int j = 0; j < N ; ++ j)
		{
			++count;
		}
	} //这里执行了N*N次
 
	for (int k = 0; k < 2 * N ; ++ k)
	{
		++count;
	}//这里执行了2N次
	
	int M = 10;
	while (M--)
	{
		++count;
	}//这里执行了10次
	printf("%d\n", count);
}

这里Func1执行的基本操作次数为:
F(N) = N2 + 2*N + 10

  • N = 10 , F(N) = 130
  • N = 100 , F(N) = 10210
  • N = 1000 , F(N) = 1002010

实际中我们计算时间复杂度时,我们并不一定要精确的执行次数,而只需要大概的执行次数,那么这里我们就要用大O的渐进表示法了。

那什么是大O的渐进表示法呢?

2.2 大O的渐进表示法

大O符号:是用于描述函数渐进行为的数字符号

重点来了,推导大O阶的方法:

  1. 用常数1取代运行时间的所有加法常数。
  2. 在修改后的运行次数函数中,只保留最高阶项。
  3. 如果最高阶项存在且系数不是1,则去除与这个项相乘的常数。得到的结果就是大O阶了。

通过上述的方法,我们也可以知道一个道理:一个算法的时间复杂度是用一个数学函数来近似的,而这个大O阶就表示一个Level(等级),越高的Level,算法的时间复杂度越高。

上面的例子如果我们用大O渐进表示法以后,时间复杂度就变为了:O(N2)

  • N = 10 , F(N) = 100
  • N = 100 , F(N) = 10000
  • N = 1000 , F(N) = 1000000

通过上面的我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。

当然,算出一个时间复杂度的路上往往不会那么顺利。
有些算法的时间复杂度存在最好、平均和最快的情况:

最坏情况:任意输入规模的最大运行次数(上界)
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数(下界)

例如:在一个长度为N数组中搜索一个数据x

最好情况:1次找到

最坏情况:N次找到

平均情况:N/2次找到
所以在实际情况中,我们一般关注的是算法的最坏运行情况,所以数组中搜索数据的时间复杂度为O(N)。

2.3 常见时间复杂度计算举例

实例1:

// 计算Func2的时间复杂度?
void Func2(int N)
{
	int count = 0;
	for (int k = 0; k < 2 * N ; ++ k)
	{
		++count;
	}
	 int M = 10;
	while (M--)
	{
		++count;
	}
	printf("%d\n", count);
}

实例2:

// 计算Func3的时间复杂度?
void Func3(int N, int M)
{
 	int count = 0;
 	for (int k = 0; k < M; ++ k)
 	{
 		++count;
 	}
	 for (int k = 0; k < N ; ++ k)
	 {
		 ++count;
 	}
 	printf("%d\n", count);
}

实例3:

// 计算Func4的时间复杂度?
void Func4(int N)
{
 	int count = 0;
	for (int k = 0; k < 100; ++ k)
 	{
 		++count;
 	}
 	printf("%d\n", count);
}

实例4:

// 计算strchr的时间复杂度?
const char * strchr ( const char * str, int character );

实例5:

// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{
 	assert(a);
 	for (size_t end = n; end > 0; --end)
 	{
 		int exchange = 0;
 	for (size_t i = 1; i < end; ++i)
 	{
 		if (a[i-1] > a[i])
 		{
 			Swap(&a[i-1], &a[i]);
 			exchange = 1;
 		}
 	}
 	if (exchange == 0)
 		break;
 	}
}

实例6:

// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{
 	assert(a);
 	int begin = 0;
 	int end = n-1;
 	while (begin < end)
 	{
 		int mid = begin + ((end-begin)>>1);
 		if (a[mid] < x)
 			begin = mid+1;
 		else if (a[mid] > x)
 			end = mid;
 		else
	 		return mid;
 	}
 	return -1;
}

实例7:

// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{
 	if(0 == N)
 		return 1;
 
	 return Fac(N-1)*N;
}

实例8:

// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{
 	if(N < 3)
 		return 1;
 
 	return Fib(N-1) + Fib(N-2);
}

实例答案及分析:

  1. 实例1基本操作执行了2N+10次,通过推导大O阶方法知道,时间复杂度为 O(N)
  2. 实例2基本操作执行了M+N次,有两个未知数M和N,时间复杂度为 O(N+M)
  3. 实例3基本操作执行了10次,通过推导大O阶方法,时间复杂度为 O(1)
  4. 实例4基本操作执行最好1次,最坏N次,时间复杂度一般看最坏,时间复杂度为 O(N)
  5. 实例5基本操作执行最好N次,最坏执行了(N*(N+1)/2次,通过推导大O阶方法+时间复杂度一般看最坏,时间复杂度为 O(N^2)
  6. 实例6基本操作执行最好1次,最坏O(logN)次,时间复杂度为 O(logN)
    ps:logN在算法分析中表示是底数为2,对数为N。有些地方会写成lgN。(建议通过折纸查找的方式讲解logN是怎么计算出来的)
  7. 实例7通过计算分析发现基本操作递归了N次,时间复杂度为O(N)。
  8. 实例8通过计算分析发现基本操作递归了2N次,时间复杂度为O(2N)。(建议画图递归栈帧的二叉树讲解)

怎么样,你们答对了多少了。

这大家需要注意的是一种写法,就是以2为底的对数,在时间复杂度这里就写为O(logN)。
hahah

3. 空间复杂度

3.1 空间复杂度的定义

空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度 。

空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法。

注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定

3.2 空间复杂度的实例

实例1:

// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{
	assert(a);
 	for (size_t end = n; end > 0; --end)
 	{
 		int exchange = 0;
 		for (size_t i = 1; i < end; ++i)
 		{
 			if (a[i-1] > a[i])
 			{
 				Swap(&a[i-1], &a[i]);
 				exchange = 1;
 			}
 		}
 	if (exchange == 0)
 		break;
 	}
}

实例2:

// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{
 	if(n==0)
 		return NULL;
 
 	long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));
 	fibArray[0] = 0;
 	fibArray[1] = 1;
 	for (int i = 2; i <= n ; ++i)
 	{
 		fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
 	}
 	return fibArray;
}

实例3:

// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{
 	if(N == 0)
 		return 1;
 
 	return Fac(N-1)*N;
}

实例答案及分析:

  1. 实例1使用了常数个额外空间,所以空间复杂度为 O(1)
  2. 实例2动态开辟了N个空间,空间复杂度为 O(N)
  3. 实例3递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。空间复杂度为O(N)

4. 常见的复杂度对比

一般的算法常见的复杂度:

5201314O(1)常数阶
3n+4O(n)线性阶
3n2+4n+5O(n2)平方阶
3log(n)+4O(log(n))对数阶
2n+3log(n)*n+4O(n*log(n))nlog()阶
n3+3n^2+4n+5O(n3)立方阶
2nO(2n)指数阶

好了,本文就讲解到这里了。如果觉得本文写得好不错的话,麻烦给偶点个赞吧!!!

请添加图片描述

评论 103
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值