【深度学习基础模型】Efficient Learning of Sparse Representations with an Energy-Based Model
【深度学习基础模型】Efficient Learning of Sparse Representations with an Energy-Based Model
文章目录
参考地址:https://www.asimovinstitute.org/neural-network-zoo/
论文地址:https://www.cs.toronto.edu/~ranzato/publications/ranzato-nips06.pdf
欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!
1. 稀疏自编码器 (Sparse Autoencoders, SAE) 的原理与应用
1.1 SAE 原理
稀疏自编码器(Sparse Autoencoder, SAE)是一种特殊类型的自编码器,其设计目的是在编码过程中引入稀疏性,以鼓励网络学习更多的特征。与标准自编码器不同,SAE 的目标是将输入