【深度学习基础模型】稀疏自编码器 (Sparse Autoencoders, SAE)详细理解并附实现代码。

【深度学习基础模型】Efficient Learning of Sparse Representations with an Energy-Based Model

【深度学习基础模型】Efficient Learning of Sparse Representations with an Energy-Based Model



参考地址:https://www.asimovinstitute.org/neural-network-zoo/
论文地址:https://www.cs.toronto.edu/~ranzato/publications/ranzato-nips06.pdf

欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!

1. 稀疏自编码器 (Sparse Autoencoders, SAE) 的原理与应用

1.1 SAE 原理

稀疏自编码器(Sparse Autoencoder, SAE)是一种特殊类型的自编码器,其设计目的是在编码过程中引入稀疏性,以鼓励网络学习更多的特征。与标准自编码器不同,SAE 的目标是将输入

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

985小水博一枚呀

祝各位老板前程似锦!财源滚滚!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值