TensorFlowOnSpark、PySpark
Wide&Deep模型报错
ValueError: Items of feature_columns must be a _FeatureColumn. Given (type <class 'collections._IndicatorColumn'>)
原因分析
单机模型运行同样代码可以正常运行,但使用TFCluster.run 执行就会出现以上类型错误
主要是spark将方法广播到executor执行时序列化过程出现问题,此时无法将TensorFlow项目中_FeatureColumn类型正确序列化,导致feature_column.py中报检查类型出错
for column in feature_columns:
print("==="+str(type(column)))
if not isinstance(column, _FeatureColumn):
raise ValueError('Items of feature_columns must be a _FeatureColumn. '
'Given (type {}): {}.'.format(type(column), column))
解决办法,将如下代码加到driver程序的python文件中
import collections
collections.namedtuple.__hijack = 1
当__hijack有值后,pyspark项目中serializer.py的如下方法内容将不会被执行
def _hijack_namedtu

在尝试使用TensorFlowOnSpark和PySpark运行Wide&Deep模型时遇到ValueError,错误指出feature_columns必须为_FeatureColumn类型。问题源于Spark广播执行时_FeatureColumn类型的序列化问题。解决方案是在driver程序的python文件中进行特定修改以避免类型检查错误。
最低0.47元/天 解锁文章
6万+

被折叠的 条评论
为什么被折叠?



