Sum of xor sum UVALive - 8518 —— 求区间所有子区间异或和

This way

题意:

给你一些数,每次问你从l到r这个区间的所有子区间异或和是多少。

题解:

这种题目总是会把自己绕进去啊,看了别人的题解发现和自己想的差不多,但是自己还是没有想出来。
这种题目的话一般就是看每个数的每一位的贡献,这一位只有在奇数个区间内才有贡献。那么对于这一道题目来说,答案的计算方法可能是sum[r]-sum[l]-(左区间对右区间的影响)。
那么为了求出sum数组,需要知道到达当前位的时候有多少个奇数区间,这时候候用异或前缀和就会方便很多用zero[i]表示到第i位的时候异或前缀和有过多少个0,one表示有过多少个1,这样的话当新到达的位置的异或前缀和是0的时候,那么就表示有偶数个1,那我们只需要-one[i-1],就表示将其分为两个奇数个1的区间的数量。由于在0位置的时候就是0,那么zero一开始需要置为1,否则之后就会少一个到0为止的区间。
左区间对右区间的影响就是左端点在左区间,右端点在右区间且其中的1的个数是奇数的情况。这时候我们不需要知道pre[l-1],pre[r]是否是1,我们只需要让左端点-1的位置到右端点的位置中间的1是奇数的即可,所以只需要一个用one,一个用zero,那么相减之后就是答案。为什么是l-2,因为左端点要<=l-1,如果是l-1的话就表示从l开始了。

#include<bits/stdc++.h>
using namespace std;
#define ll long long
const ll mod=1e9+7;
const int N=1e5+5;
int pre[N][21],one[N][21],zero[N][21],a[N];
ll sum[N][21];
int main()
{
    int t;
    for(int i=0;i<=20;i++)
        zero[0][i]=1;
    while(~scanf("%d",&t))
    {
        while(t--)
        {
            int n,q;
            scanf("%d%d",&n,&q);
            for(int i=1;i<=n;i++)
            {
                scanf("%d",&a[i]);
                for(ll j=0;j<=20;j++)
                {
                    pre[i][j]=pre[i-1][j]^(a[i]&(1<<j)?1:0);
                    one[i][j]=one[i-1][j]+pre[i][j];
                    zero[i][j]=zero[i-1][j]+(pre[i][j]?0:1);
                    if(!pre[i][j])
                        sum[i][j]=(sum[i-1][j]+one[i-1][j]*(1<<j))%mod;
                    else
                        sum[i][j]=(sum[i-1][j]+zero[i-1][j]*(1<<j))%mod;
                }
            }
            while(q--)
            {
                int l,r;
                scanf("%d%d",&l,&r);
                ll ans=0;
                for(int i=0;i<=20;i++)
                {
                    ans=(ans+sum[r][i]-sum[l-1][i]+mod)%mod;
                    if(l>2)
                        ans=(ans-zero[l-2][i]*(one[r][i]-one[l-1][i])*(1ll<<i)%mod-one[l-2][i]*(zero[r][i]-zero[l-1][i])*(1ll<<i)%mod)%mod;
                    ans=(ans+mod)%mod;
                }
                printf("%lld\n",ans);
            }
        }
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值