题意:
给你一些数,每次问你从l到r这个区间的所有子区间异或和是多少。
题解:
这种题目总是会把自己绕进去啊,看了别人的题解发现和自己想的差不多,但是自己还是没有想出来。
这种题目的话一般就是看每个数的每一位的贡献,这一位只有在奇数个区间内才有贡献。那么对于这一道题目来说,答案的计算方法可能是sum[r]-sum[l]-(左区间对右区间的影响)。
那么为了求出sum数组,需要知道到达当前位的时候有多少个奇数区间,这时候候用异或前缀和就会方便很多用zero[i]表示到第i位的时候异或前缀和有过多少个0,one表示有过多少个1,这样的话当新到达的位置的异或前缀和是0的时候,那么就表示有偶数个1,那我们只需要-one[i-1],就表示将其分为两个奇数个1的区间的数量。由于在0位置的时候就是0,那么zero一开始需要置为1,否则之后就会少一个到0为止的区间。
左区间对右区间的影响就是左端点在左区间,右端点在右区间且其中的1的个数是奇数的情况。这时候我们不需要知道pre[l-1],pre[r]是否是1,我们只需要让左端点-1的位置到右端点的位置中间的1是奇数的即可,所以只需要一个用one,一个用zero,那么相减之后就是答案。为什么是l-2,因为左端点要<=l-1,如果是l-1的话就表示从l开始了。
#include<bits/stdc++.h>
using namespace std;
#define ll long long
const ll mod=1e9+7;
const int N=1e5+5;
int pre[N][21],one[N][21],zero[N][21],a[N];
ll sum[N][21];
int main()
{
int t;
for(int i=0;i<=20;i++)
zero[0][i]=1;
while(~scanf("%d",&t))
{
while(t--)
{
int n,q;
scanf("%d%d",&n,&q);
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
for(ll j=0;j<=20;j++)
{
pre[i][j]=pre[i-1][j]^(a[i]&(1<<j)?1:0);
one[i][j]=one[i-1][j]+pre[i][j];
zero[i][j]=zero[i-1][j]+(pre[i][j]?0:1);
if(!pre[i][j])
sum[i][j]=(sum[i-1][j]+one[i-1][j]*(1<<j))%mod;
else
sum[i][j]=(sum[i-1][j]+zero[i-1][j]*(1<<j))%mod;
}
}
while(q--)
{
int l,r;
scanf("%d%d",&l,&r);
ll ans=0;
for(int i=0;i<=20;i++)
{
ans=(ans+sum[r][i]-sum[l-1][i]+mod)%mod;
if(l>2)
ans=(ans-zero[l-2][i]*(one[r][i]-one[l-1][i])*(1ll<<i)%mod-one[l-2][i]*(zero[r][i]-zero[l-1][i])*(1ll<<i)%mod)%mod;
ans=(ans+mod)%mod;
}
printf("%lld\n",ans);
}
}
}
return 0;
}