解决方法
g++ track.cpp -o run `pkg-config --cflags --libs opencv`
其中track.cpp是你自己的文件,run是启动文件
运行
./run
即可启动项目
以下是一个用opencv的程序,以供测试
#include <opencv2/opencv.hpp>
#include <iostream>
#include <stdio.h>
using namespace std;
using namespace cv;
Mat img(500, 500, CV_8UC3);
//计算相对窗口的坐标值,因为坐标原点在左上角,所以sin前有个负号
static inline Point calcPoint(Point2f center, double R, double angle)
{
return center + Point2f((float)cos(angle), (float)-sin(angle))*(float)R;
}
void drawCross(Point center, Scalar color, int d)
{
line(img, Point(center.x - d, center.y - d),
Point(center.x + d, center.y + d), color, 1, CV_AA, 0);
line(img, Point(center.x + d, center.y - d),
Point(center.x - d, center.y + d), color, 1, CV_AA, 0);
}
static void help()
{
printf("\nExamle of c calls to OpenCV's Kalman filter.\n"
" Tracking of rotating point.\n"
" Rotation speed is constant.\n"
" Both state and measurements vectors are 1D (a point angle),\n"
" Measurement is the real point angle + gaussian noise.\n"
" The real and the estimated points are connected with yellow line segment,\n"
" the real and the measured points are connected with red line segment.\n"
" (if Kalman filter works correctly,\n"
" the yellow segment should be shorter than the red one).\n"
"\n"
" Pressing any key (except ESC) will reset the tracking with a different speed.\n"
" Pressing ESC will stop the program.\n"
);
}
int main(int, char**)
{
help();
KalmanFilter KF(2, 1, 0); //创建卡尔曼滤波器对象KF
Mat state(2, 1, CV_32F); //state(角度,△角度)
Mat processNoise(2, 1, CV_32F);
Mat measurement = Mat::zeros(1, 1, CV_32F); //定义测量值
char code = (char)-1;
Scalar color;
int d=5;
for (;;)
{
//1.初始化
randn(state, Scalar::all(0), Scalar::all(0.1)); //
KF.transitionMatrix = (Mat_<float>(2, 2) << 1, 1, 0, 1); //转移矩阵A[1,1;0,1]
//将下面几个矩阵设置为对角阵
setIdentity(KF.measurementMatrix); //测量矩阵H
setIdentity(KF.processNoiseCov, Scalar::all(1e-5)); //系统噪声方差矩阵Q
setIdentity(KF.measurementNoiseCov, Scalar::all(1e-1)); //测量噪声方差矩阵R
setIdentity(KF.errorCovPost, Scalar::all(1)); //后验错误估计协方差矩阵P
randn(KF.statePost, Scalar::all(0), Scalar::all(0.1)); //x(0)初始化
for (;;)
{
Point2f center(img.cols*0.5f, img.rows*0.5f); //center图像中心点
float R = img.cols / 3.f; //半径
double stateAngle = state.at<float>(0); //跟踪点角度
Point statePt = calcPoint(center, R, stateAngle); //跟踪点坐标statePt
//2. 预测
Mat prediction = KF.predict(); //计算预测值,返回x'
double predictAngle = prediction.at<float>(0); //预测点的角度
Point predictPt = calcPoint(center, R, predictAngle); //预测点坐标predictPt
//3.更新
//measurement是测量值
randn(measurement, Scalar::all(0), Scalar::all(KF.measurementNoiseCov.at<float>(0))); //给measurement赋值N(0,R)的随机值
// generate measurement
measurement += KF.measurementMatrix*state; //z = z + H*x;
double measAngle = measurement.at<float>(0);
Point measPt = calcPoint(center, R, measAngle);
// plot points
//定义了画十字的方法,值得学习下
img = Scalar::all(0);
drawCross(statePt, Scalar(255, 255, 255), 3);
drawCross(measPt, Scalar(0, 0, 255), 3);
drawCross(predictPt, Scalar(0, 255, 0), 3);
line(img, statePt, measPt, Scalar(0, 0, 255), 3, CV_AA, 0);
line(img, statePt, predictPt, Scalar(0, 255, 255), 3, CV_AA, 0);
//调用kalman这个类的correct方法得到加入观察值校正后的状态变量值矩阵
if (theRNG().uniform(0, 4) != 0)
KF.correct(measurement);
//不加噪声的话就是匀速圆周运动,加了点噪声类似匀速圆周运动,因为噪声的原因,运动方向可能会改变
randn(processNoise, Scalar::all(0), Scalar::all(sqrt(KF.processNoiseCov.at<float>(0, 0)))); //vk
state = KF.transitionMatrix*state + processNoise;
imshow("Kalman", img);
code = (char)waitKey(100);
if (code > 0)
break;
}
if (code == 27 || code == 'q' || code == 'Q')
break;
}
return 0;
}