vscode运行OpenCV项目时出现undefined reference to cv::xxxx

该博客介绍了一个使用OpenCV库实现的卡尔曼滤波器应用示例,用于跟踪旋转点。程序通过创建卡尔曼滤波器对象,进行预测和更新步骤,有效地跟踪旋转点并减少测量噪声的影响。博客还提供了详细的代码实现,并展示了如何在C++环境中编译和运行该项目。
摘要由CSDN通过智能技术生成

解决方法

g++ track.cpp -o run `pkg-config --cflags --libs opencv`

其中track.cpp是你自己的文件,run是启动文件
运行

./run

即可启动项目
以下是一个用opencv的程序,以供测试

#include <opencv2/opencv.hpp>
#include <iostream>  
#include <stdio.h>  
using namespace std;
using namespace cv;
Mat img(500, 500, CV_8UC3);
//计算相对窗口的坐标值,因为坐标原点在左上角,所以sin前有个负号  
static inline Point calcPoint(Point2f center, double R, double angle)
{
	return center + Point2f((float)cos(angle), (float)-sin(angle))*(float)R;
}
void drawCross(Point center, Scalar color, int d)
{
	line(img, Point(center.x - d, center.y - d),
		Point(center.x + d, center.y + d), color, 1, CV_AA, 0);
	line(img, Point(center.x + d, center.y - d),
		Point(center.x - d, center.y + d), color, 1, CV_AA, 0);
}
static void help()
{
	printf("\nExamle of c calls to OpenCV's Kalman filter.\n"
		"   Tracking of rotating point.\n"
		"   Rotation speed is constant.\n"
		"   Both state and measurements vectors are 1D (a point angle),\n"
		"   Measurement is the real point angle + gaussian noise.\n"
		"   The real and the estimated points are connected with yellow line segment,\n"
		"   the real and the measured points are connected with red line segment.\n"
		"   (if Kalman filter works correctly,\n"
		"    the yellow segment should be shorter than the red one).\n"
		"\n"
		"   Pressing any key (except ESC) will reset the tracking with a different speed.\n"
		"   Pressing ESC will stop the program.\n"
		);
}
 
int main(int, char**)
{
	help();
	
	KalmanFilter KF(2, 1, 0);                                    //创建卡尔曼滤波器对象KF  
	Mat state(2, 1, CV_32F);                                     //state(角度,△角度)  
	Mat processNoise(2, 1, CV_32F);
	Mat measurement = Mat::zeros(1, 1, CV_32F);                 //定义测量值  
	char code = (char)-1;
	Scalar color;
	int d=5;
 
	for (;;)
	{
		//1.初始化  
		randn(state, Scalar::all(0), Scalar::all(0.1));          //  
		KF.transitionMatrix = (Mat_<float>(2, 2) << 1, 1, 0, 1);  //转移矩阵A[1,1;0,1]      
 
 
																   //将下面几个矩阵设置为对角阵  
		setIdentity(KF.measurementMatrix);                             //测量矩阵H  
		setIdentity(KF.processNoiseCov, Scalar::all(1e-5));            //系统噪声方差矩阵Q  
		setIdentity(KF.measurementNoiseCov, Scalar::all(1e-1));        //测量噪声方差矩阵R  
		setIdentity(KF.errorCovPost, Scalar::all(1));                  //后验错误估计协方差矩阵P  
 
		randn(KF.statePost, Scalar::all(0), Scalar::all(0.1));          //x(0)初始化  
 
		for (;;)
		{
			Point2f center(img.cols*0.5f, img.rows*0.5f);          //center图像中心点  
			float R = img.cols / 3.f;                                //半径  
			double stateAngle = state.at<float>(0);                //跟踪点角度  
			Point statePt = calcPoint(center, R, stateAngle);     //跟踪点坐标statePt  
 
																  //2. 预测  
			Mat prediction = KF.predict();                       //计算预测值,返回x'  
			double predictAngle = prediction.at<float>(0);          //预测点的角度  
			Point predictPt = calcPoint(center, R, predictAngle);   //预测点坐标predictPt  
 
 
																	//3.更新  
																	//measurement是测量值  
			randn(measurement, Scalar::all(0), Scalar::all(KF.measurementNoiseCov.at<float>(0)));     //给measurement赋值N(0,R)的随机值  
 
																									  // generate measurement  
			measurement += KF.measurementMatrix*state;  //z = z + H*x;  
 
			double measAngle = measurement.at<float>(0);
			Point measPt = calcPoint(center, R, measAngle);
 
			// plot points  
			//定义了画十字的方法,值得学习下  
			
			
 
			img = Scalar::all(0);
			drawCross(statePt, Scalar(255, 255, 255), 3);
			drawCross(measPt, Scalar(0, 0, 255), 3);
			drawCross(predictPt, Scalar(0, 255, 0), 3);
			line(img, statePt, measPt, Scalar(0, 0, 255), 3, CV_AA, 0);
			line(img, statePt, predictPt, Scalar(0, 255, 255), 3, CV_AA, 0);
 
 
			//调用kalman这个类的correct方法得到加入观察值校正后的状态变量值矩阵  
			if (theRNG().uniform(0, 4) != 0)
				KF.correct(measurement);
 
			//不加噪声的话就是匀速圆周运动,加了点噪声类似匀速圆周运动,因为噪声的原因,运动方向可能会改变  
			randn(processNoise, Scalar::all(0), Scalar::all(sqrt(KF.processNoiseCov.at<float>(0, 0))));   //vk  
			state = KF.transitionMatrix*state + processNoise;
 
			imshow("Kalman", img);
			code = (char)waitKey(100);
 
			if (code > 0)
				break;
		}
		if (code == 27 || code == 'q' || code == 'Q')
			break;
	}
 
	return 0;
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值