目录
IEEE Vis 2017
IEEE 2017的VIS会议主题按论文的类型划分为三类:可视分析(VAST)、信息可视化(InfoVis)、科学可视化(SciVis)。因为可视化研究的涉及的方向越来越多,已超出了这三个主题可涵盖的范围,从2021年开始,VIS会议论文的主题划分变得更为细致。近年来会议录用的长文(除了部分VAST论文),都发表在可视化顶级期刊IEEE Transactions on Visualization and Computer Graphics(TVCG)上。
IEEE Vis 还会从TVCG和CG&A来引用先前已经发表的可视化相关的论文,在会议上展示。
2017年也收录了不少计算机视觉的论文。
论文目录:
IEEE VIS国际会议 | Chart, Line chart, Conference (pinterest.com)
IEEE Vis 2018
除了2017年论文的投稿类别,还包括了短文SciVis short papers,
关于短文:
短论文为VIS会议提供了一种新的方式来贡献最近的结果和初步工作,这对年轻的研究人员来说可能特别有价值。接受的短文将在VIS会议上以10分钟的演示形式(20分钟全文演示的一半)进行演示。
IEEE SciVis的短文与SciVis全文的主题和类型相同。不同之处在于,短文只有篇幅的一半:四页加上最多一页的参考文献。提交的文件将采用VGTC会议的两栏格式,符合IEEE VIS格式指南。
短论文提交截止日期为2018年6月13日,这为展示3月完整论文截止日期后出现的最新研究成果创造了机会。这一截止日期是在6月6日有条件接受完整论文的通知后的一周,从而能够对原本可能不属于VIS的工作进行提炼和重点表达。短论文也是海报格式的补充(截止日期为6月16日)。短论文将根据指导方针进行审查,这些指导方针鼓励接受范围比全文更为适度,但对VIS受众来说仍然重要和有趣的工作。短论文将被收录在会议记录中,并在IEEE Xplore中以SciVIs标题命名,并提供适当的DOI编号。
会议论文集:
IEEE 2019
界面风格换了,内容分为三个板块:
- (J) TVCG journal special issue (SI) papers
- (T) Previously published TVCG journal papers presented at VIS
- (C) Conference papers
短文参见:
Short Papers Call for Participation (ieeevis.org)
IEEE 2020:
投稿内容基本上没有变化,还是包括之前的内容以及短文:
Papers - Call For Participation (ieeevis.org)
Short Paper Call for Participation (ieeevis.org)
论文集:
类似于海报的外观展示:
IEEE VIS 2020 Virtual : Papers
IEEE 2021:
领域分成了六大块:
分别是【理论和经验】、【面向应用】、【系统和渲染】、【可视表达与交互】、【数据的转换和映射】以及【可视数据分析与决策】
Papers - Call For Participation (ieeevis.org)
短文集:
Short Paper Call for Participation (ieeevis.org)
论文集:
IEEE 2022:
领域版块没有变化。
论文集:
Short Paper Call for Participation (ieeevis.org)
主题:IEEE VIS: Visualization & Visual Analytics
虚拟会议的论文展示:
IEEE 2023:
版块没有任何变化,投稿是3月:
8月8号定稿,之后就能看到论文列表。
与体渲染和科学可视化相关的论文:
共32篇(有几篇TOG推荐作报告的不算在内):
渲染效果相关(体焦散、多材质、散射模型、环境光遮蔽、传输函数生成)10篇:
2017年:An Intelligent System Approach for Probabilistic Volume Rendering using Hierarchical 3D Convolutional Sparse Coding
2017年:Interactive Dynamic Volume Illumination with Refraction and Caustics
2018年:Interactive Obstruction-free Lensing for Volumetric Data Visualization
2018年:Multi-Material Volume Rendering with a Physically-Based Surface Reflection Model
2018年:A Generative Model for Volume Rendering
2019年:A Learned Shape-Adaptive Subsurface Scattering Model
2019年:FeatureLego: Volume Exploration Using Exhaustive of Super-Voxels
2020年:Deep Volumetric Ambient Occlusion
2022年:Finding Nano-Ötzi: Cryo-Electron Tomography Visualization Guided by Learned Segmentation
2022年:Volume Puzzle: visual analysis of segmented volume data with multivariate attributes
2019年:Volume Path Guiding Based on Zero-Variance Random Walk Theory
2019年:A Null-Scattering Path Integral Formulation of Light Transport
超分辨重建与数据压缩6篇:
2018年:Interactive Visualization of 3D Histopathology in Native Resolution
2018年:A Study of the Trade-off between Reduced Precision and Resolution for Scientific Data Analysis and Visualization
2020年:Volumetric Isosurface Rendering with Deep Learning-Based Super-Resolution
2021年:Learning Adaptive Sampling and Reconstruction for Volume Visualization
2021年:STNet: An End-to-End Generative Framework for Synthesizing Spatiotemporal Super-Resolution Volumes
2022年:Quick Clusters: A GPU-Parallel Partitioning for Efficient Path Tracing of Unstructured Volumetric Grids
非结构化体数据5篇:
2018年:A Scalable Hybrid Scheme for Ray-Casting of Unstructured Volume Data
2019年:Ray-based Exploration of Large Time-varying Volume Data Using Proxy Per-ray Distributions
2021年:Accelerating UnstructuredMesh Point Location with RT Cores
2021年:A Memory Efficient Encoding for Ray Tracing Large Unstructured Data
2021年:Ray-traced Shell Traversal of Tetrahedral Meshes for Direct Volume Visualization
体渲染的不确定性的研究3篇:
2017年:A Statistical Direct Volume Rendering Framework for Visualization of Uncertain Data
2020年:Direct Volume Rendering with Nonparametric Models of Uncertainty
2022年:GRay: Ray-Casting for Visualization and Interactive Data Exploration of Gaussian Mixture Models
体渲染加速数据结构(各种树和网格结构)3篇:
2017年:SparseLeap: Efficient Empty Space Skipping for Large-Scale Volume Rendering
2019年:Efficient Space Skipping and Adaptive Sampling of Unstructured Volumes using Hardware Accelerated Ray Tracing
2019年:Hybrid Grids for Sparse Volume Rendering
VR/MR相关(用于HMD设备显示的优化技术)2篇:
2020年:FAVR - Accelerating Direct Volume Rendering for Virtual Reality Systems
2022年:FoVolNet: Fast Volume Rendering using Foveated Deep Neural Networks
可微分渲染2篇:
2019年:Neural Volumes: Learning Dynamic Renderable Volumes from Images
2021年:Differentiable Direct Volume Rendering
时变体数据1篇:
2018年:Exploring Time-Varying Multivariate Volume Data Using Matrix of Isosurface Similarity Maps