因为最近工作的关系,需要研究一下IEEE VIS中2017年以后的与我之前主要方向(体渲染、医学可视化)有关的论文。我把这些年全部的论文进行了筛选和梳理,总共筛选出57篇论文,打算写一个文章来记录这些内容。这个栏目是2017年的四篇论文的介绍。
第一篇:
An Intelligent System Approach for Probabilistic Volume Rendering using Hierarchical 3D Convolutional Sparse Coding
Authors: Tran Minh Quan, JunYoung Choi, HaeJin Jeong, and Won-Ki Jeong
提出了基于机器学习的体素分类方法,用于将不同的体素映射为不同的属性。
与包含基于intensity(即体素值)特征的传统体素分类方法不同,所提出的方法采用了使用分层多尺度3D卷积稀疏编码直接从输入数据中学习的基于字典的特征,这是最先进的基于学习的稀疏特征表示方法的新扩展。
所提出的方法自动生成高达75维的高维特征向量,然后将其输入到建立在随机森林分类器上的智能系统中,用于仅从用户直接在输入数据上做出的少数选择涂鸦中准确地分类体素。我们应用概率转换函数来进一步定制和细化渲染结果。
与传统的基于强度的分类方法相比,所提出的方法使用起来更直观,并且对噪声更鲁棒。我们使用几个合成的和真实世界的体数据集对所提出的方法进行了评估,并通过用户研究证明了方法的可用性。
(将会附带详细解读)
第二篇:
Interactive Dynamic Volume Illumination with Refraction and Caustics
Authors: Jens Magnus and Stefan Bruckner
近年来,在开发用于逼真体积照明的高质量交互式方法方面取得了重大进展。然而,折射——尽管是光在参与介质中传播的一个重要方面——迄今为止只受到很少的关注。在本文中,我们提出了一种新的折射体照明方法,包括能够以交互帧速率渲染的焦散。通过交错(interleaving)光和观察光线传播,我们的技术避免了照明信息的内存密集型存储,并且不需要任何预计算。它是完全动态的,所有参数,如光线位置和传递函数,都可以交互修改,而不会造成性能损失。
(将会附带详细解读)
第三篇:
SparseLeap: Efficient Empty Space Skipping for Large-Scale Volume Rendering
Authors: Markus Hadwiger, Ali K. Al-Awami, Johanna Beyer, Marco Agus, and Hanspeter Pfister
数据采集的最新进展产生了非常高分辨率和大尺寸的体数据,例如TB大小的显微镜体数据。这些数据通常包含许多精细而复杂的结构,这给体绘制带来了巨大的挑战,并且使得有效地跳过空白空间变得尤为重要。本文解决了两个主要挑战:(1)包含精细结构的大体积的复杂性往往导致高度碎片化的空间细分,使空区域难以有效跳过。(2) 将空间划分为空区域和非空区域的分类经常发生变化,因为用户或交互式查询的评估激活了不同的对象集,这使得预先计算适应良好的空间细分是不可行的。我们描述了一种新颖的SparseLeap方法,用于在非常大的体中,甚至在精细结构周围进行有效的空空间跳跃。SparseLeap的主要性能特点是它将跳过空白空间的主要成本从光线投射阶段转移出去。我们通过一种混合策略来实现这一点,该策略平衡了光栅化(对象顺序)阶段中确定空光线段和光线投射(图像顺序)阶段对非空体数据采样之间的计算负载。在光线投射之前,我们利用GPU的快速硬件光栅化为每个像素创建一个光线段列表,该列表标识光线中的非空区域。然后,光线投射阶段在没有层次遍历的情况下跳过空白空间。光线段列表是通过光栅化一组细粒度的、与视图无关的边界框来创建的。除非活动对象集发生变化,否则通过重新使用相同的边界框来利用帧一致性。我们表明,SparseLeap比标准的八叉树空空间跳跃更适合大型稀疏数据。
(将会附带详细解读)
第四篇:
A Statistical Direct Volume Rendering Framework for Visualization of Uncertain Data
Authors: Elham Sakhaee and Alireza Entezari
由于几乎所有的数据采集、减少、转换和表示方式都存在不确定性,因此对数据处理管线中不确定性传播的数学分析需求越来越大。在本文中,我们提出了一个统计框架,用于量化可视化管道主要阶段的不确定性及其传播。我们从样条和盒样条的统计观点出发,提出了Irwin-Hall分布的一种新的推广方法,该方法能够对随机变量进行插值。此外,我们引入了一个概率传递函数分类模型,该模型允许将概率密度函数合并到体绘制积分中。我们的统计框架允许合并来自各种不确定性来源的分布,这使其适用于广泛的可视化应用。我们展示了我们的方法在集成数据可视化、缩小规模的大型数据集可视化、等表面提取和噪声数据可视化方面的有效性。
(将会附带详细解读)