文献阅读(152)Eyeriss v2(未完)

Eyeriss v2 是麻省理工学院针对移动设备提出的灵活深度神经网络加速器。文章讨论了紧凑型和稀疏DNN对硬件设计的挑战,并介绍了其创新的层次化mesh片上网络(NoC),以提高数据复用和并行处理。通过多播和广播策略,该架构能够有效利用空间数据重用,并支持权重和激活的稀疏性。此外,Eyeriss v2采用两层内存层次结构和控制逻辑,确保高效的数据流动和计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 题目:Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices
  • 时间:2019
  • 期刊:IEEE Journal of Emerging and Selected Topics in Circuits and Systems
  • 研究机构:MIT Vivienne Sze

1 缩写 & 引用

  • CSC: compressed sparse column
  • DW: depth wise
  • GLB: global buffer
  • SPad: scratch pad

SCNN: An Accelerator for Compressed-sparse Convolutional Neural Networks 2017 ISCA
Loom: Exploiting weight and activation precisions to accelerate convolutional neural networks 2018 DAC

2 abstract & introduction

现在compact DNN对硬件设计的挑战:

  • compact网络可能会diminish dimension,就是缺少某一维度,导致数据不能像以前那样复用
  • 会导致硬件利用率降低
  • 数据复用率低,可能会增加对带宽的要求,带宽可能受限

sparse DNN对硬件设计的挑战:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值