文献阅读(38)

  • 题目:FPGA-based Implementation of a Real-Time Object Recognition System using Convolutional Neural Network
  • 时间:2019
  • 期刊:TCAS-2(Transactions on Circuits and Systems II: Express Briefs)
  • 研究机构:德黑兰大学

1 abstract

实时object recognition,运行Alexnet完成分类任务,512DSP,可以实现198.1GOPs
ov7670摄像头实时输入,224x224,
activation是16比特,权重是8比特
在这里插入图片描述
图中有3个memory

  • Data Mem: 片上存储,存储input feature和output feature
  • Ext Mem: 片外,存储权重
  • ARM Mem:片外,存储input image,可以传输到Data Mem

2 架构

两层的并行度,一个是output channel维度上,有32个并行度,也就是说一次来32个kernel
另一个并行度在input channel上,有16个并行度,这16个部分和应该累加起来
32x16=512个DSP
在这里插入图片描述
结果送到Rectifier & Shifter unit单元,完成ReLU
全连接层有64个DSP,所以512+64=576个DSP


  • 题目:A Resource-Efficient Multiplierless Systolic Array Architecture for Convolutions in Deep Networks
  • 时间:2020
  • 期刊:TCAS-2(Transactions on Circuits and Systems II: Express Briefs)
  • 研究机构:印度理工学院

1 abstract

  • 平台:Xilinx Virtex-5 XC5VLX5OT
  • 数据集:cifar-10 86.2%精度
    本篇论文的主要创新点:
  1. 利用CORDIC实现无乘法器的卷积策略
  2. dataflow采用脉动环systolic ring,实现100%的资源利用
  3. 针对环结构的优化降低了latency减少了memory access

2 不需要乘法器的卷积

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值