文献阅读(214)CXL-PNM

  • 题目:An LPDDR-based CXL-PNM Platform for TCO-efficient Inference of Transformer-based Large Language Models
  • 会议:HPCA
  • 时间:2024
  • 研究机构:三星

本篇论文的主要贡献:
CXL-PNM包含了3部分

  • LPDDR-based CXL memory architecture
  • CXL-PNM controller architecture integrated with an LLM inference accelerator
  • software stack
    基于CXL的近存计算平台,LPDDR5X可以达到512GB容量和1.1TBps带宽,实现了一个LLM推理加速器,利用CXL来客服HBM-PIM和AxDIMM等其他技术的缺点,同时实现了CXL-PNM软件栈。

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述


  • 题目:Exploiting Similarity Opportunities of Emerging Vision AI Models on Hybrid Bonding Architecture
  • 会议:ISCA
  • 时间:2024
  • 研究机构:清华

为什么要hybrid bonding
AI算法中的Clustering Similarity Effect (CSE)值得更好的挖掘,但CSE在现有的2D / 2.5D DRAM访问时存在局限性,这是因为受限的I/O数量以及memory interleaving,但如果是在3D架构,如hybrid bonding DRAM,因为I/O并行度更高,而且不用interleaving,聚类的效率更高
挑战是什么?

  1. 聚类时全局的搜索代价高
  2. 数据相似性没有被现有的稀疏引擎利用
  3. 负载不平衡的问题要解决

本篇论文的主要贡献: 基于hybrid bonding DRAM设计的硬件加速器架构,实现相似性检测,减少冗余计算
搭建了一个模拟器,17nm hybrid bonding DRAM + 12nm逻辑芯片

3D hybrid bonding
逻辑芯片上面堆叠DRAM,中间插入铜柱做互联,集成密度高(110,000/mm2 with 3um pitch)
本篇论文是低频I/O设计,DRAM存储体数据通过铜线连接直接与逻辑单元接口,无需异步phy,以降低寄生电阻,提高能效(0.88 pJ/bit)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值