Tracing the technological development trajectory in post-lithium-ionbattery technologies

本文探讨了后锂离子电池技术的研究动态,揭示了专利数据中技术收敛现象,强调了电动汽车相关知识的重要性。通过机器学习算法比较,预测未来研究热点。基于DII专利数据库,分析了2008-2016年间的技术进步和知识领域交互。
摘要由CSDN通过智能技术生成

摘要:

        首先,根据客观数据,我们确定了后锂离子电池技术目前的研究趋势和前景,帮助研发规划者确定其进一步的研发方向。对后锂离子电池技术发展轨迹的探索,可以为相关研究人员更好地了解动态和战略调整提供参考,对清洁能源和绿色化学的发展具有深远的意义。
        其次,它发现了交互知识领域的动态,这表 明技术收敛的趋势增加。在锂空气和锂硫电池的情况下,观察到有关核心电池组件(电池配置和电解 质)的知识领域与应用驱动的知识领域(电动汽车和电话)之间存在显著的相互作用。在钠离子电技 术的情况下这些相互作用的强度相当弱。因此,研究人员需要寻找他们传统知识边界之外的新知 识,以加速后锂离子电池的商业突破。特别是,与电动汽车相关的知识领域在所有被检查的电池技术 中都获得了重要意义,这反映了生产高能电池系统的驱动力。
        第三,通过比较不同机器学习算法的预测能力,它预测了那些在未来研究中可能获得更多相关性的知识领域。

数据:
        我们从德温特创新指数(DII)中收集了专利数据,该指数是最 全面的国际专利信息数据库之一,涵盖了自1963年以来来自全球 52个专利颁发机构的7000万项专利。
算法:
        在选择最优机器学习算法 方面,我们测试了三种不同的分类器(支持向量机(SVM)、高斯朴素贝叶斯和决策树分类器),比较了它们的性能,并使用机器预测 模型预测了最佳的预测性能。
input:
        

 

Train:
        随机抽样,80%的特征向量用于训练所选的分类器,而测试使用剩下的20%。通过计算精度、精度和召回度 量,验证了分类器模型的性能。

时间划分:

        本研究主要分析自2008年起被审查的专利数据,以 描述专利活动中最新的知识互动趋势。将纳入的年份分为三个不 同的时间间隔(2008-2010;2011-2013;2014-2016),以捕捉每种 电池技术的进化动态。我们使用了四位数的专利分类方案。组级 信息),以获得知识区域如何相互关联的更细粒度的图像,并将网络可视化的复杂性保持在一定的范围内。
评价指标:

实验结果:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值