基于图神经网络 链路预测

  • 6
    点赞
  • 39
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
神经网络(Graph Neural Network,GNN)是一种用于处理形数据的神经网络链路预测是指在一个已知的中,预测两个节点之间是否存在一条边。下面,我们将介绍如何使用 Python 实现神经网络链路预测。 一、安装 PyTorch 和 DGL 首先,我们需要安装 PyTorch 和 DGL(Deep Graph Library)。可以通过以下命令来安装它们: ``` pip install torch pip install dgl ``` 二、准备数据 我们将使用一个来自 DGL 的数据集来演示链路预测。该数据集包含了一个论文引用网络,其中每个节点表示一篇论文,边表示引用关系。我们的任务是预测两篇论文之间是否存在引用关系。 我们可以使用以下代码来加载数据: ``` import dgl.data dataset = dgl.data.CoraGraphDataset() g = dataset[0] ``` 在这个例子中,我们加载了 Cora 数据集,并获取了其中的第一个。 三、构建模型 我们将使用 GNN 模型来预测链路。我们将使用 PyTorch Geometric 库来构建模型。以下是我们的代码: ``` import torch import torch.nn.functional as F from torch_geometric.nn import GCNConv class Net(torch.nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = GCNConv(dataset.num_features, 16) self.conv2 = GCNConv(16, dataset.num_classes) def forward(self, g, inputs): h = self.conv1(g, inputs) h = F.relu(h) h = F.dropout(h, training=self.training) h = self.conv2(g, h) return h ``` 我们定义了一个名为 Net 的类,它继承自 torch.nn.Module。在构造函数中,我们初始化了两个 GCNConv 层,分别用于输入层和输出层。在前向传递中,我们首先使用第一个层对输入进行卷积,然后使用 ReLU 激活函数和 Dropout 层进行激活和正则化,最后使用第二个层进行卷积并返回输出。 四、训练模型 在训练模型之前,我们需要定义一些超参数,如学习率、迭代次数等。以下是我们的代码: ``` import time import numpy as np import torch.optim as optim from torch.utils.data import DataLoader from torch.utils.data.sampler import SubsetRandomSampler # 设置超参数 lr = 0.01 epochs = 200 batch_size = 32 train_size = 0.6 # 划分数据集 num_nodes = g.num_nodes() indices = np.random.permutation(num_nodes) split_idx = int(num_nodes * train_size) train_loader = DataLoader(dataset, batch_size=batch_size, sampler=SubsetRandomSampler(indices[:split_idx])) test_loader = DataLoader(dataset, batch_size=batch_size, sampler=SubsetRandomSampler(indices[split_idx:])) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 初始化模型和优化器 model = Net().to(device) optimizer = optim.Adam(model.parameters(), lr=lr) # 训练模型 model.train() start_time = time.time() for epoch in range(epochs): train_loss = 0.0 for batch_idx, (inputs, targets, edge_index) in enumerate(train_loader): inputs, targets, edge_index = inputs.to(device), targets.to(device), edge_index.to(device) optimizer.zero_grad() outputs = model(g, inputs) loss = F.binary_cross_entropy_with_logits(outputs[edge_index[0]], targets.float()) loss.backward() optimizer.step() train_loss += loss.item() * inputs.size(0) train_loss /= len(train_loader.dataset) print('Epoch: {:04d}'.format(epoch+1), 'train_loss: {:.4f}'.format(train_loss), 'time: {:.4f}s'.format(time.time()-start_time)) ``` 在这个例子中,我们先将数据集划分为训练集和测试集。然后,我们使用 DataLoader 类将训练集和测试集转换为可迭代的数据集。接下来,我们初始化模型和优化器。在训练循环中,我们对每个批次进行前向传递和反向传递,并更新模型参数。我们还计算了训练集的平均损失,并打印了每个 epoch 的结果。 五、测试模型 最后,我们使用以下代码测试模型的性能: ``` def test(model, loader): model.eval() correct = 0 for batch_idx, (inputs, targets, edge_index) in enumerate(loader): inputs, targets, edge_index = inputs.to(device), targets.to(device), edge_index.to(device) with torch.no_grad(): outputs = model(g, inputs) pred = (outputs[edge_index[0]] > 0).float() correct += (pred == targets.float()).sum().item() accuracy = correct / len(loader.dataset) return accuracy train_acc = test(model, train_loader) test_acc = test(model, test_loader) print('Train accuracy: {:.4f}'.format(train_acc)) print('Test accuracy: {:.4f}'.format(test_acc)) ``` 在这个例子中,我们使用 test() 函数对模型进行测试。在测试循环中,我们对每个批次进行前向传递,并计算预测准确率。最后,我们打印了训练集和测试集的准确率。 六、总结 在本文中,我们介绍了如何使用 Python 实现神经网络链路预测。我们使用了 PyTorch 和 DGL 库来构建和训练 GNN 模型,并使用 PyTorch Geometric 库进行模型构建。通过本文的学习,您应该能够了解如何使用 Python 实现神经网络链路预测,并且能够应用这些知识到实际的项目中。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值