摘要
选项I涉及对本地数据进行额外的传递,以计算服务器模型x的梯度。选项II则重用先前计算的梯度来更新控制变量。根据应用程序的不同,选项I可能比选项II更稳定,但选项II的计算成本更低,而且通常足够(我们所有的实验都使用选项II)。然后,客户端更新被聚合并用于更新服务器参数:
这就完成了一轮通信。注意,SCAFFOLD中的客户机是有状态的,并且在多个回合中保留ci的值。此外,如果ci总是被设置为0,那么SCAFFOLD就等同于FEDAVG。在算法1中总结了全部细节。
摘要
选项I涉及对本地数据进行额外的传递,以计算服务器模型x的梯度。选项II则重用先前计算的梯度来更新控制变量。根据应用程序的不同,选项I可能比选项II更稳定,但选项II的计算成本更低,而且通常足够(我们所有的实验都使用选项II)。然后,客户端更新被聚合并用于更新服务器参数:
这就完成了一轮通信。注意,SCAFFOLD中的客户机是有状态的,并且在多个回合中保留ci的值。此外,如果ci总是被设置为0,那么SCAFFOLD就等同于FEDAVG。在算法1中总结了全部细节。