SCAFFOLD: Stochastic Controlled Averaging for Federated Learning

摘要

选项I涉及对本地数据进行额外的传递,以计算服务器模型x的梯度。选项II则重用先前计算的梯度来更新控制变量。根据应用程序的不同,选项I可能比选项II更稳定,但选项II的计算成本更低,而且通常足够(我们所有的实验都使用选项II)。然后,客户端更新被聚合并用于更新服务器参数:

这就完成了一轮通信。注意,SCAFFOLD中的客户机是有状态的,并且在多个回合中保留ci的值。此外,如果ci总是被设置为0,那么SCAFFOLD就等同于FEDAVG。在算法1中总结了全部细节。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值