A : easy dfs

在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。
Input
输入含有多组测试数据。 
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n 
当为-1 -1时表示输入结束。 
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。 
Output
对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。
Sample Input
2 1
#.
.#
4 4
...#
..#.
.#..
#...
-1 -1
Sample Output
2
1

分析:一:按行进行dfs。

二:存结果的时候设置计数器,而不要拿返回值当结果。

三:对每一行进行dfs时有两种选择,一个是选择当前行,一个是不选择当前行。

代码:

#include<iostream>
#include<string.h>
#include<cstdio>
using namespace std;
int n, k;
char maps[8][8];
int res;
int temp[8]; //标记数组
int cnt;
void dfs(int h, int l)
{
	if (l == 0) {
		cnt++;
		return;
	}
	if (h < n) {
		dfs(h + 1, l);	//第一种情况
		for (int i = 0; i < n; i++) {
			if (temp[i] == 0 && maps[h][i] == '#') {
				temp[i] = 1;
				dfs(h + 1, l - 1);		//第二种情况
				temp[i] = 0;		//还原
			}
		}
	}
	else {
		return;
	}
}
int main()
{
	while (cin >> n >> k) {
		if (n == -1) {
			break;
		}
		memset(maps, 0, sizeof(maps));
		for (int i = 0; i < n; i++) {
			for (int j = 0; j < n; j++) {
				cin >> maps[i][j];
			}
		}
		memset(temp, 0, sizeof(temp));
		cnt = 0;
		dfs(0, k);
		printf("%d\n", cnt);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值