在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。
输入含有多组测试数据。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。
2 1 #. .# 4 4 ...# ..#. .#.. #... -1 -1
2 1
分析:一:按行进行dfs。
二:存结果的时候设置计数器,而不要拿返回值当结果。
三:对每一行进行dfs时有两种选择,一个是选择当前行,一个是不选择当前行。
代码:
#include<iostream>
#include<string.h>
#include<cstdio>
using namespace std;
int n, k;
char maps[8][8];
int res;
int temp[8]; //标记数组
int cnt;
void dfs(int h, int l)
{
if (l == 0) {
cnt++;
return;
}
if (h < n) {
dfs(h + 1, l); //第一种情况
for (int i = 0; i < n; i++) {
if (temp[i] == 0 && maps[h][i] == '#') {
temp[i] = 1;
dfs(h + 1, l - 1); //第二种情况
temp[i] = 0; //还原
}
}
}
else {
return;
}
}
int main()
{
while (cin >> n >> k) {
if (n == -1) {
break;
}
memset(maps, 0, sizeof(maps));
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
cin >> maps[i][j];
}
}
memset(temp, 0, sizeof(temp));
cnt = 0;
dfs(0, k);
printf("%d\n", cnt);
}
return 0;
}