YOLO2中anchors设置

训练YOLO2时会用到cfg文件,这个网络结构文件里面的Region层有一个anchors参数就是论文中对应的用k-means方法产生的5个box的信息,这些数据的使用在YOLO2代码中可见:

1、解析是在parse.c中的parse_region

2、使用是调用get_region_boxes函数,其中get_region_box

box get_region_box(float *x, float *biases, int n, int index, int i, int j, int w, int h)
{
    box b;
    b.x = (i + logistic_activate(x[index + 0])) / w;
    b.y = (j + logistic_activate(x[index + 1])) / h;
    b.w = exp(x[index + 2]) * biases[2*n];
    b.h = exp(x[index + 3]) * biases[2*n+1];
    if(DOABS){
        b.w = exp(x[index + 2]) * biases[2*n]   / w;
        b.h = exp(x[index + 3]) * biases[2*n+1] / h;
    }
    return b;
}
上面代码的解释如下:

 x[index + 0]是网络预测的偏移量,即论文中的tx,同理x[index + 1]是预测偏移量ty,x[index + 2]是预测偏移量tw,x[index + 3]是预测偏移量th。


 i,j就是cell左上角到图像左上角点的偏移,对应论文中cx,cy,这里即特征图中的像素点坐标。


 biases[2*n]就是anchors的宽,论文中的pw,biases[2*n+1]是ph。


 除以特征图宽高w和h是要求预测框坐标在特征图中的比例,在最后计算在原始图中的坐标时,只要乘以原始图的长宽即可,见image.c中int left  = (b.x-b.w/2.)*im.w。因为特征图和原始图也是一个倍数关系,所以虽然预测框坐标是相对于特征图的坐标,但是比例一样,这里乘以原图的宽高即可得到预测框在原图中的坐标。

重点是根据自己的训练数据,怎么得到anchors,当然可以用手动设计。这里介绍k-means方法生成。见anchors生成

# -*- coding: utf-8 -*-

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import numpy as np
import os
import random
from tqdm import tqdm 
import sklearn.cluster as cluster


def iou(x, centroids):
    dists = []
    for centroid in centroids:
        c_w, c_h = centroid
        w, h = x
        if c_w >= w and c_h >= h:
            dist = w * h / (c_w * c_h)
        elif c_w >= w and c_h <= h:
            dist = w * c_h / (w * h + (c_w - w) * c_h)
        elif c_w <= w and c_h >= h:
            dist = c_w * h / (w * h + c_w * (c_h - h))
        else:  # means both w,h are bigger than c_w and c_h respectively
            dist = (c_w * c_h) / (w * h)
        dists.append(dist)
    return np.array(dists)


def avg_iou(x, centroids):
    n, d = x.shape
    sums = 0.
    for i in range(x.shape[0]):
        # note IOU() will return array which contains IoU for each centroid and X[i]
        # slightly ineffective, but I am too lazy
        sums += max(iou(x[i], centroids))
    return sums / n


def write_anchors_to_file(centroids, distance, anchor_file):
    anchors = centroids * 416 / 32      # I do not know whi it is 416/32
    anchors = [str(i) for i in anchors.ravel()]
    print(
        "\n",
        "Cluster Result:\n",
        "Clusters:", len(centroids), "\n",
        "Average IoU:", distance, "\n",
        "Anchors:\n",
        ", ".join(anchors)
    )

    with open(anchor_file, 'w') as f:
        f.write(", ".join(anchors))
        f.write('\n%f\n' % distance)


def k_means(x, n_clusters, eps):
    init_index = [random.randrange(x.shape[0]) for _ in range(n_clusters)]
    centroids = x[init_index]

    d = old_d = []
    iterations = 0
    diff = 1e10
    c, dim = centroids.shape

    while True:
        iterations += 1
        d = np.array([1 - iou(i, centroids) for i in x])
        if len(old_d) > 0:
            diff = np.sum(np.abs(d - old_d))

        print('diff = %f' % diff)

        if diff < eps or iterations > 1000:
            print("Number of iterations took = %d" % iterations)
            print("Centroids = ", centroids)
            return centroids

        # assign samples to centroids
        belonging_centroids = np.argmin(d, axis=1)

        # calculate the new centroids
        centroid_sums = np.zeros((c, dim), np.float)
        for i in range(belonging_centroids.shape[0]):
            centroid_sums[belonging_centroids[i]] += x[i]

        for j in range(c):
            centroids[j] = centroid_sums[j] / np.sum(belonging_centroids == j)

        old_d = d.copy()


def get_file_content(fnm):
    with open(fnm) as f:
        return [line.strip() for line in f]


def main(args):
    print("Reading Data ...")

    file_list = []
    for f in args.file_list:
        file_list.extend(get_file_content(f))
    
    data = []
    for one_file in tqdm(file_list):
        one_file = one_file.replace('images', 'labels') \
            .replace('JPEGImages', 'labels') \
            .replace('.png', '.txt') \
            .replace('.jpg', '.txt')
        #print("one_file is:\n",one_file)
        for line in get_file_content(one_file):
            clazz, xx, yy, w, h = line.split()
            data.append([float(w),float(h)]) 

    data = np.array(data)
    if args.engine.startswith("sklearn"):
        if args.engine == "sklearn":
            km = cluster.KMeans(n_clusters=args.num_clusters, tol=args.tol, verbose=True)
        elif args.engine == "sklearn-mini":
            km = cluster.MiniBatchKMeans(n_clusters=args.num_clusters, tol=args.tol, verbose=True)
        km.fit(data)
        result = km.cluster_centers_
        # distance = km.inertia_ / data.shape[0]
        distance = avg_iou(data, result)
    else:
        result = k_means(data, args.num_clusters, args.tol)
        distance = avg_iou(data, result)

    write_anchors_to_file(result, distance, args.output)
if "__main__" == __name__:
    parser = argparse.ArgumentParser()
    parser.add_argument('file_list', nargs='+', help='TrainList')
    parser.add_argument('--num_clusters', '-n', default=5, type=int, help='Number of Clusters')
    parser.add_argument('--output', '-o', default='../results/anchor.txt', type=str, help='Result Output File')
    parser.add_argument('--tol', '-t', default=0.005, type=float, help='Tolerate')
    parser.add_argument('--engine', '-m', default='sklearn', type=str,
                        choices=['original', 'sklearn', 'sklearn-mini'], help='Method to use')

    args = parser.parse_args()

    main(args)
生成结果,Average IOU就是论文中评价好坏的指标,5是指用5个,你也可以甚至其他数字,IOU效果不一样就是。

 Cluster Result:
 Clusters: 5
 Average IoU: 0.633343079996
 Anchors:
 1.81218901641, 2.0756480568, 11.101054447, 9.88710144146, 3.27746965391, 5.96042296557, 4.84211551027, 8.96603606529, 9.99847701672, 6.52768518575
提示:
代码里有一段替换字符串的功能,要求你的图像(我图像放在JPEGImages)和labels文件夹要放在同一目录下,这样才能找到labels文件,这里是pascal voc的格式




评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值