Bailian4004 数字组合【递归+DP】

博客探讨了如何使用递归和动态规划方法解决寻找正整数组合的问题。给定一组不超过20个正整数和一个目标和(不超过1000),任务是找出所有可能的组合方式。递归实现虽然效率较低,但可以通过记忆化搜索优化。动态规划解决方案则更为高效,通过填充一个二维数组来记录达到每个和的不同组合数。程序给出了两种方法的C语言实现,并提供了样例输入和输出。
摘要由CSDN通过智能技术生成

4004:数字组合

总时间限制: 1000ms 内存限制: 65536kB
描述
有n个正整数,找出其中和为t(t也是正整数)的可能的组合方式。如:
n=5,5个数分别为1,2,3,4,5,t=5;
那么可能的组合有5=1+4和5=2+3和5=5三种组合方式。
输入
输入的第一行是两个正整数n和t,用空格隔开,其中1<=n<=20,表示正整数的个数,t为要求的和(1<=t<=1000)
接下来的一行是n个正整数,用空格隔开。
输出
和为t的不同的组合方式的数目。
样例输入
5 5
1 2 3 4 5
样例输出
3

问题链接Bailian4004 数字组合
问题简述:(略)
问题分析:用递归函数解决组合问题,用动态规划来解决则计算时间更短,不解释。递归实现虽然有点慢,可以用记忆化递归来改进。该题与参考链接是同类型题,只是输入数据不同。
程序说明:(略)
参考链接Bailian2755 神奇的口袋【递归+DP】
题记:(略)

AC的C语言程序(递归)如下:

/* Bailian4004 数字组合 */

#include <stdio.h>
#include <string.h>

#define N 20
#define T 1000

int a[N];

int cnt(int n, int w)
{
    if(w == 0) return 1;
    else if(n == 0) return 0;
    else return cnt(n - 1, w) + cnt(n - 1, w - a[n - 1]);
}

int main()
{
    int n, t;
    scanf("%d%d", &n, &t);
    for(int i = 0; i < n; i++)
        scanf("%d", &a[i]);

    printf("%d\n", cnt(n, t));

    return 0;
}

AC的C语言程序(DP)如下:

/* Bailian4004 数字组合 */

#include <stdio.h>
#include <string.h>

#define N 20
#define T 1000

int a[N + 1], dp[T + 1];

int main()
{
    int n, t;
    scanf("%d%d", &n, &t);
    for(int i = 1; i <= n; i++)
        scanf("%d", &a[i]);

    memset(dp, 0, sizeof dp);
    dp[0] = 1;
    for (int i = 1; i <= n; i++)
        for (int j = t; j >= 1; j--)
            if (a[i] <= j)
                dp[j] += dp[j - a[i]];

    printf("%d\n", dp[t]);

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值