总时间限制: 1000ms 内存限制: 65536kB
描述
有n个正整数,找出其中和为t(t也是正整数)的可能的组合方式。如:
n=5,5个数分别为1,2,3,4,5,t=5;
那么可能的组合有5=1+4和5=2+3和5=5三种组合方式。
输入
输入的第一行是两个正整数n和t,用空格隔开,其中1<=n<=20,表示正整数的个数,t为要求的和(1<=t<=1000)
接下来的一行是n个正整数,用空格隔开。
输出
和为t的不同的组合方式的数目。
样例输入
5 5
1 2 3 4 5
样例输出
3
问题链接:Bailian4004 数字组合
问题简述:(略)
问题分析:用递归函数解决组合问题,用动态规划来解决则计算时间更短,不解释。递归实现虽然有点慢,可以用记忆化递归来改进。该题与参考链接是同类型题,只是输入数据不同。
程序说明:(略)
参考链接:Bailian2755 神奇的口袋【递归+DP】
题记:(略)
AC的C语言程序(递归)如下:
/* Bailian4004 数字组合 */
#include <stdio.h>
#include <string.h>
#define N 20
#define T 1000
int a[N];
int cnt(int n, int w)
{
if(w == 0) return 1;
else if(n == 0) return 0;
else return cnt(n - 1, w) + cnt(n - 1, w - a[n - 1]);
}
int main()
{
int n, t;
scanf("%d%d", &n, &t);
for(int i = 0; i < n; i++)
scanf("%d", &a[i]);
printf("%d\n", cnt(n, t));
return 0;
}
AC的C语言程序(DP)如下:
/* Bailian4004 数字组合 */
#include <stdio.h>
#include <string.h>
#define N 20
#define T 1000
int a[N + 1], dp[T + 1];
int main()
{
int n, t;
scanf("%d%d", &n, &t);
for(int i = 1; i <= n; i++)
scanf("%d", &a[i]);
memset(dp, 0, sizeof dp);
dp[0] = 1;
for (int i = 1; i <= n; i++)
for (int j = t; j >= 1; j--)
if (a[i] <= j)
dp[j] += dp[j - a[i]];
printf("%d\n", dp[t]);
return 0;
}