HDU Today
Time Limit: 15000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 52260 Accepted Submission(s): 12370
Problem Description
经过锦囊相助,海东集团终于度过了危机,从此,HDU的发展就一直顺风顺水,到了2050年,集团已经相当规模了,据说进入了钱江肉丝经济开发区500强。这时候,XHD夫妇也退居了二线,并在风景秀美的诸暨市浬浦镇陶姚村买了个房子,开始安度晚年了。
这样住了一段时间,徐总对当地的交通还是不太了解。有时很郁闷,想去一个地方又不知道应该乘什么公交车,在什么地方转车,在什么地方下车(其实徐总自己有车,却一定要与民同乐,这就是徐总的性格)。
徐总经常会问蹩脚的英文问路:“Can you help me?”。看着他那迷茫而又无助的眼神,热心的你能帮帮他吗?
请帮助他用最短的时间到达目的地(假设每一路公交车都只在起点站和终点站停,而且随时都会开)。
Input
输入数据有多组,每组的第一行是公交车的总数N(0<=N<=10000);
第二行有徐总的所在地start,他的目的地end;
接着有n行,每行有站名s,站名e,以及从s到e的时间整数t(0<t<100)(每个地名是一个长度不超过30的字符串)。
note:一组数据中地名数不会超过150个。
如果N==-1,表示输入结束。
Output
如果徐总能到达目的地,输出最短的时间;否则,输出“-1”。
Sample Input
6
xiasha westlake
xiasha station 60
xiasha ShoppingCenterofHangZhou 30
station westlake 20
ShoppingCenterofHangZhou supermarket 10
xiasha supermarket 50
supermarket westlake 10
-1
Sample Output
50
Hint:
The best route is:
xiasha->ShoppingCenterofHangZhou->supermarket->westlake
虽然偶尔会迷路,但是因为有了你的帮助
**和**从此还是过上了幸福的生活。
――全剧终――
Author
lgx
Source
ACM程序设计_期末考试(时间已定!!)
问题链接:HDU2112 HDU Today
问题简述:(略)
问题分析:用经典的Floyd算法计算最短路。
程序说明:判定“-1”结束条件时使用了运算符“~”。
参考链接:(略)
题记:(略)
AC的C++语言程序如下:
/* HDU2112 HDU Today */
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
/* Floyd-Warshall算法:计算图中任意2点之间的最短距离
* 复杂度:O(N×N×N)
* 输入:n 全局变量,图结点数
* g 全局变量,邻接矩阵,g[i][j]表示结点i到j间的边距离
* 输出:g 全局变量
*/
const int INF = 0x3f3f3f3f;
const int N = 150 + 1;
int g[N][N], n;
void floyd()
{
for(int k = 1; k <= n; k++)
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++)
g[i][j] = min(g[i][j], g[i][k] + g[k][j]);
}
const int L = 30 + 1;
char s[N][L], c[L];
int getid(char c[])
{
for (int i = 1; i <= n; i++)
if (strcmp(s[i], c) == 0) return i;
strcpy(s[++n], c);
return n;
}
int main()
{
int m;
while (~scanf("%d", &m) && ~m) {
memset(g, INF, sizeof g);
for(int i = 1; i <= N; i++) g[i][i] = 0;
n = 1;
scanf("%s%s", s[n], c);
int u = 1, v = getid(c);
while (m--) {
int u1, v1, w;
scanf("%s", c);
u1 = getid(c);
scanf("%s", c);
v1 = getid(c);
scanf("%d", &w);
g[u1][v1] = g[v1][u1] = min(g[u1][v1], w);
}
floyd();
printf("%d\n", g[u][v] == INF ? -1 : g[u][v]);
}
return 0;
}