黑白棋子的移动
题目描述
有 2 n 2n 2n 个棋子排成一行,开始为位置白子全部在左边,黑子全部在右边,如下图为 n = 5 n=5 n=5 的情况:
移动棋子的规则是:每次必须同时移动相邻的两个棋子,颜色不限,可以左移也可以右移到空位上去,但不能调换两个棋子的左右位置。每次移动必须跳过若干个棋子(不能平移),要求最后能移成黑白相间的一行棋子。如 n = 5 n=5 n=5 时,成为:
任务:编程打印出移动过程。
输入格式
一个整数 n n n。
输出格式
若干行,表示初始状态和每次移动的状态,用 o \verb!o! o 表示白子, * \verb!*! * 表示黑子, - \verb!-! - 表示空行。
样例 #1
样例输入 #1
7
样例输出 #1
ooooooo*******--
oooooo--******o*
oooooo******--o*
ooooo--*****o*o*
ooooo*****--o*o*
oooo--****o*o*o*
oooo****--o*o*o*
ooo--***o*o*o*o*
ooo*o**--*o*o*o*
o--*o**oo*o*o*o*
o*o*o*--o*o*o*o*
--o*o*o*o*o*o*o*
提示
$ 4\leq n\leq 100$
问题链接: P1259 黑白棋子的移动
问题分析: 递归问题,不解释。
参考链接: (略)
题记: (略)
AC的C++语言程序如下:
/* P1259 黑白棋子的移动 */
#include <iostream>
using namespace std;
const int N = 200 + 1;
char c[N];
int n, t;
void print(int k)
{
for (int i = 1; i <= 2 * k + 2; i++)
cout << c[i];
cout << endl;
}
void init(int n)
{
for (int i = 1; i <= n; i++) c[i] = 'o';
for (int i = n + 1; i <= 2 * n; i++) c[i] = '*';
for (int i = 2 * n + 1; i <= 2 * n + 2; i++) c[i] = '-';
print(n);
t = n;
}
void solve(int k)
{
if (n == 4) {
swap(c[4], c[9]); swap(c[5], c[10]); print(k);
swap(c[8], c[4]); swap(c[9], c[5]); print(k);
swap(c[2], c[8]); swap(c[3], c[9]); print(k);
swap(c[7], c[2]); swap(c[8], c[3]); print(k);
swap(c[1], c[7]); swap(c[2], c[8]); print(k);
} else {
swap(c[n], c[2 * n + 1]); swap(c[n + 1], c[2 * n + 2]); print(k);
swap(c[n], c[2 * n - 1]); swap(c[n + 1], c[2 * n]); print(k);
n--;
solve(k);
}
}
int main()
{
cin >> n;
init(n);
solve(n);
return 0;
}