【stata】基础指令——学习教程全记录(01)

本文档详细记录了使用Stata进行数据探索的过程,包括使用`describe`、`count`、`isid`、`unique`、`codebook`和`summarize`等命令来了解数据集的概况、检查重复值和获取统计摘要。适合初学者参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

开一文记录和总结stata的学习,不断更新中~

拿到一个数据集,首先要全局了解一下这个数据集的情况:

【describe】查看这个数据集的简要介绍,包括了样本数量(obs:)、变量数量(vars:)、大小(size:)、以及每个标量的简要介绍。

【describe[varlist]】:可以单独选择某个变量查看,[]表示可选。

【describe,short】:只看整个数据集的总体概况,即截图显示的上半部分。

【count】:number of rows

【count if missing() 】:设置条件

【isid()】:check if an variable uniquely id entifies the data.检查变量是否唯一标识数据,相当于判断主属性。

【unique】先安装,指令【ssc install unique】

重复值数据量(所有数据量)和唯一值(不重复的数据)数据量。

 

【codebook】:适合初次接触一个数据集时查看一些信息

类型(numeric: )、标签(label)、范围(range)、单位(units)、特异值&#

### Stata 中的数据清洗方法 在Stata中进行数据清洗是一项复杂但至关重要的任务,能够显著提升后续数据分析的质量和准确性。具体操作涉及多个方面。 对于字符型变量转换成数值型的问题,在从Excel导入数据至Stata的过程中确实可能发生,例如编号`001111`可能被简化为`1111`[^4]。为了避免这种情况影响分析结果,可以在读取文件时指定格式或者调整变量属性以保持原始形式。 针对日期字段的处理,可以利用内置函数如`substr()`来提取特定部分的信息,比如获取年份等有用成分;当面对多源或多时段的数据集时,则可通过`merge`指令实现横向连接不同表单内的记录,而采用`append`则有助于纵向堆叠相似结构的数据片段。 此外,为了更好地理解和应用这些技术手段,还可以参考更详尽的教学资源。例如,有实例展示了基于中国家庭追踪调查(CFPS)这一大型社会经济类面板资料库的具体流程——这不仅限于基础层面的操作指南,还包括创建复合指标在内的高级技巧介绍[^2]。 最后值得注意的是,除了上述提到的功能外,还有更多实用工具等待探索。像加载外部文件(`use`)、查看整体概况(`describe`)以及计算初步统计数据(`summarize`)都是不可或缺的基础技能[^3]。 ```stata * 导入并预览数据 use "path_to_your_data.dta", clear describe summarize * 处理字符串转数字问题 destring varname, replace force * 提取日期中的年份 gen year=substr(datevar, 1, 4) * 合并两个数据集 merge 1:1 id using other_dataset.dta * 追加新观测值到现有数据集中 append using additional_records.dta ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值