机器学习算法基本概念梳理(一)

要求:不仅要懂得这些算法的理论过程,而且要非常熟悉怎样使用它,什么场合用它,算法的优缺点,以及调参经验等等。

**

朴素贝叶斯:

**

有以下几个地方需要注意:

  1. 如果给出的特征向量长度可能不同,这是需要归一化为通长度的向量(这里以文本分类为例),比如说是句子单词的话,则长度为整个词汇量的长度,对应位置是该单词出现的次数。

  2. 计算公式如下:

这里写图片描述

其中一项条件概率可以通过朴素贝叶斯条件独立展开。要注意一点就是
这里写图片描述的计算方法,而由朴素贝叶斯的前提假设可知,
这里写图片描述=这里写图片描述
,因此一般有两种,一种是在类别为ci的那些样本集中,找到wj出现次数的总和,然后除以该样本的总和;第二种方法是类别为ci的那些样本集中,找到wj出现次数的总和,然后除以该样本中所有特征出现次数的总和。

  1. 如果这里写图片描述中的某一项为0,则其联合概率的乘积也可能为0,即2中公式的分子为0,为了避免这种现象出现,一般情况下会将这一项初始化为1,当然为了保证概率相等,分母应对应初始化为2**(这里因为是2类,所以加2,如果是k类就需要加k,术语上叫做laplace光滑, 分母加k的原因是使之满足全概率公式)**。

朴素贝叶斯的优点:

对小规模的数据表现很好,适合多分类任务,适合增量式训练。

缺点:

对输入数据的表达形式很敏感。

决策树:

决策树中很重要的一点就是选择一个属性进行分枝,因此要注意一下信息增益的计算公式,并深入理解它。

信息熵的计算公式如下:
这里写图片描述
其中的n代表有n个分类类别(比如假设是2类问题,那么n=2)。分别计算这2类样本在总样本中出现的概率p1和p2,这样就可以计算出未选中属性分枝前的信息熵。

现在选中一个属性xi用来进行分枝,此时分枝规则是:如果xi=vx的话,将样本分到树的一个分支;如果不相等则进入另一个分支。很显然,分支中的样本很有可能包括2个类别,分别计算这2个分支的熵H1和H2,计算出分枝后的总信息熵H’=p1*H1+p2*H2.,则此时的信息增益ΔH=H-H’。以信息增益为原则,把所有的属性都测试一边,选择一个使增益最大的属性作为本次分枝属性。

信息增益:得知特征X的信息而使得类Y的信息的不确定性减少的程度。
g(D,A)= H(D) - H(D丨A)
信息增益=经验熵 - 经验条件熵
熵:随机变量不确定性的度量。

决策树的优点:
计算量简单,可解释性强,比较适合处理有缺失属性值的样本,能够处理不相关的特征;

缺点:
容易过拟合(后续出现了随机森林,减小了过拟合现象);

Logistic回归:

Logistic是用来分类的,是一种线性分类器,需要注意的地方有:

    • 0
      点赞
    • 6
      收藏
      觉得还不错? 一键收藏
    • 0
      评论

    “相关推荐”对你有帮助么?

    • 非常没帮助
    • 没帮助
    • 一般
    • 有帮助
    • 非常有帮助
    提交
    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值