机器学习算法基本概念梳理(一)

本文梳理了机器学习中常见的算法,包括朴素贝叶斯、决策树、Logistic回归和线性回归。朴素贝叶斯算法对小规模数据表现良好,但对输入数据表达形式敏感;决策树以信息增益选择属性,计算量小但易过拟合;Logistic回归适用于分类,但可能欠拟合;线性回归用于回归,但无法拟合非线性数据。
摘要由CSDN通过智能技术生成

要求:不仅要懂得这些算法的理论过程,而且要非常熟悉怎样使用它,什么场合用它,算法的优缺点,以及调参经验等等。

**

朴素贝叶斯:

**

有以下几个地方需要注意:

  1. 如果给出的特征向量长度可能不同,这是需要归一化为通长度的向量(这里以文本分类为例),比如说是句子单词的话,则长度为整个词汇量的长度,对应位置是该单词出现的次数。

  2. 计算公式如下:

这里写图片描述

其中一项条件概率可以通过朴素贝叶斯条件独立展开。要注意一点就是
这里写图片描述的计算方法,而由朴素贝叶斯的前提假设可知,
这里写图片描述=这里写图片描述
,因此一般有两种,一种是在类别为ci的那些样本集中,找到wj出现次数的总和,然后除以该样本的总和;第二种方法是类别为ci的那些样本集中,找到wj出现次数的总和,然后除以该样本中所有特征出现次数的总和。

  1. 如果这里写图片描述中的某一项为0,则其联合概率的乘积也可能为0,即2中公式的分子为0,为了避免这种现象出现,一般情况下会将这一项初始化为1,当然为了保证概率相等,分母应对应初始化为2**(这里因为是2类,所以加2,如果是k类就需要加k,术语上叫做laplace光滑, 分母加k的原因是使之满足全概率公式)**。

朴素贝叶斯的优点:

对小规模的数据表现很好,适合多分类任务,适合增量式训练。

缺点:

对输入数据的表达形式很敏感。

决策树:

决策树中很重要的一点就是选择一个属性进行分枝,因此要注意一下信息增益的计算公式,并深入理解它。

信息熵的计算公式如下:
这里写图片描述
其中的n代表有n个分类类别(比如假设是2类问题,那么n=2)。分别计算这2类样本在总样本中出现的概率p1和p2,这样就可以计算出未选中属性分枝前的信息熵。

现在选中一个属性xi用来进行分枝,此时分枝规则是:如果xi=vx的话,将样本分到树的一个分支;如果不相等则进入另一个分支。很显然,分支中的样本很有可能包括2个类别,分别计算这2个分支的熵H1和H2,计算出分枝后的总信息熵H’=p1*H1+p2*H2.,则此时的信息增益ΔH=H-H’。以信息增益为原则,把所有的属性都测试一边,选择一个使增益最大的属性作为本次分枝属性。

信息增益:得知特征X的信息而使得类Y的信息的不确定性减少的程度。
g(D,A)= H(D) - H(D丨A)
信息增益=经验熵 - 经验条件熵
熵:随机变量不确定性的度量。

决策树的优点:
计算量简单,可解释性强,比较适合处理有缺失属性值的样本,能够处理不相关的特征;

缺点:
容易过拟合(后续出现了随机森林,减小了过拟合现象);

Logistic回归:

Logistic是用来分类的,是一种线性分类器,需要注意的地方有:

  1. logistic函数表达式为:
    这里写图片描述
    其导数形式为:

  2. logsitic回归方法主要是用最大似然估计来学习的,所以单个样本的后验概率为:这里写图片描述
    到整个样本的后验概率:
    这里写图片描述
    其中:
    这里写图片描述
    通过对数进一步化简为:
    这里写图片描述

  3. 其实它的loss function为-l(θ),因此我们需使loss function最小,可采用梯度下降法得到。梯度下降法公式为:
    这里写图片描述

Logistic回归优点:
1、实现简单;
2、分类时计算量非常小,速度很快,存储资源低;

缺点:
1、容易欠拟合,一般准确度不太高
2、只能处理两分类问题(在此基础上衍生出来的softmax可以用于多分类),且必须线性可分

线性回归:

线性回归才是真正用于回归的,而不像logistic回归是用于分类,其基本思想是用梯度下降法对最小二乘法形式的误差函数进行优化,当然也可以用normal equation直接求得参数的解,结果为:
这里写图片描述
而在LWLR(局部加权线性回归)中,参数的计算表达式为:
这里写图片描述
因为此时优化的是:
这里写图片描述
由此可见LWLR与LR不同,LWLR是一个非参数模型,因为每次进行回归计算都要遍历训练样本至少一次。

线性回归优点:
实现简单,计算简单;

缺点:
不能拟合非线性数据

首页最新文章IT 职场前端 后端 移动端 数据库运维 其他技术
伯乐在线 > 首页 > 所有文章 > IT技术 > 常见面试之机器学习算法思想简单梳理
常见面试之机器学习算法思想简单梳理

2014/09/24 · IT技术 · 4 评论 · 机器学习, 算法, 面试
分享到: 62
Android专项测试-Python篇10年测试经验讲师
Android自动化测试实战工具 框架 脚本
Android网络层架构设计实战基于okhttp3
高性能高可用Yii2.0电商平台 高级组件 MySQL LVS
原文出处: tornadomeet 的博客(@tornadomeet)
前言:

找工作时(IT行业),除了常见的软件开发以外,机器学习岗位也可以当作是一个选择,不少计算机方向的研究生都会接触这个,如果你的研究方向是机器学习/数据挖掘之类,且又对其非常感兴趣的话,可以考虑考虑该岗位,毕竟在机器智能没达到人类水平之前,机器学习可以作为一种重要手段,而随着科技的不断发展,相信这方面的人才需求也会越来越大。

纵观IT行业的招聘岗位,机器学习之类的岗位还是挺少的,国内大点的公司里百度,阿里,腾讯,网易,搜狐,华为(华为的岗位基本都是随机分配,机器学习等岗位基本面向的是博士)等会有相关职位,另外一些国内的中小型企业和外企也会招一小部分。当然了,其中大部分还是百度北京要人最多,上百人。阿里的算法岗位很大一部分也是搞机器学习相关的。另外本人有幸签约了网易杭州研究院的深度学习算法岗位,打算从事机器学习领域至少5年。非常感谢小易收留了我!

下面是本人在找机器学习岗位工作时,总结的常见机器学习算法(主要是一些常规分类器)大概流程和主要思想,希望对大家找机器学习岗位时有点帮助。实际上在面试过程中,懂这些算法的基本思想和大概流程是远远不够的,那些面试官往往问的都是一些公司内部业务中的课题,往往要求你不仅要懂得这些算法的理论过程,而且要非常熟悉怎样使用它,什么场合用它,算法的优缺点,以及调参经验等等。说白了,就是既要会点理论,也要会点应用,既要有点深度,也要有点广度,否则运气不好的话很容易就被刷掉,因为每个面试官爱好不同。

朴素贝叶斯:

有以下几个地方需要注意:

  1. 如果给出的特征向量长度可能不同,这是需要归一化为通长度的向量(这里以文本分类为例),比如说是句子单词的话,则长度为整个词汇量的长度,对应位置是该单词出现的次数。

  2. 计算公式如下:

其中一项条件概率可以通过朴素贝叶斯条件独立展开。要注意一点就是的计算方法,而由朴素贝叶斯的前提假设可知,=,因此一般有两种,一种是在类别为ci的那些样本集中,找到wj出现次数的总和,然后除以该样本的总和;第二种方法是类别为ci的那些样本集中,找到wj出现次数的总和,然后除以该样本中所有特征出现次数的总和。

  1. 如果中的某一项为0,则其联合概率的乘积也可能为0,即2中公式的分子为0,为了避免这种现象出现,一般情况下会将这一项初始化为1,当然为了保证概率相等,分母应对应初始化为2(这里因为是2类,所以加2,如果是k类就需要加k,术语上叫做laplace光滑, 分母加k的原因是使之满足全概率公式)。

朴素贝叶斯的优点:

对小规模的数据表现很好,适合多分类任务,适合增量式训练。

缺点:

对输入数据的表达形式很敏感。

决策树:

决策树中很重要的一点就是选择一个属性进行分枝,因此要注意一下信息增益的计算公式,并深入理解它。

信息熵的计算公式如下:

其中的n代表有n个分类类别(比如假设是2类问题,那么n=2)。分别计算这2类样本在总样本中出现的概率p1和p2,这样就可以计算出未选中属性分枝前的信息熵。

现在选中一个属性xi用来进行分枝,此时分枝规则是:如果xi=vx的话,将样本分到树的一个分支;如果不相等则进入另一个分支。很显然,分支中的样本很有可能包括2个类别,分别计算这2个分支的熵H1和H2,计算出分枝后的总信息熵H’=p1*H1+p2*H2.,则此时的信息增益ΔH=H-H’。以信息增益为原则,把所有的属性都测试一边,选择一个使增益最大的属性作为本次分枝属性。

决策树的优点:

计算量简单,可解释性强,比较适合处理有缺失属性值的样本,能够处理不相关的特征;

缺点:

容易过拟合(后续出现了随机森林,减小了过拟合现象);

Logistic回归:

Logistic是用来分类的,是一种线性分类器,需要注意的地方有:

  1. logistic函数表达式为:

其导数形式为:

  1. logsitc回归方法主要是用最大似然估计来学习的,所以单个样本的后验概率为:

到整个样本的后验概率:

其中:

通过对数进一步化简为:

  1. 其实它的loss function为-l(θ),因此我们需使loss function最小,可采用梯度下降法得到。梯度下降法公式为:

Logistic回归优点:

1、实现简单;

2、分类时计算量非常小,速度很快,存储资源低;

缺点:

1、容易欠拟合,一般准确度不太高

2、只能处理两分类问题(在此基础上衍生出来的softmax可以用于多分类),且必须线性可分;

线性回归:

线性回归才是真正用于回归的,而不像logistic回归是用于分类,其基本思想是用梯度下降法对最小二乘法形式的误差函数进行优化,当然也可以用normal equation直接求得参数的解,结果为:

而在LWLR(局部加权线性回归)中,参数的计算表达式为:

因为此时优化的是:

由此可见LWLR与LR不同,LWLR是一个非参数模型,因为每次进行回归计算都要遍历训练样本至少一次。

线性回归优点:

实现简单,计算简单;

缺点:

不能拟合非线性数据;

KNN算法:

KNN即最近邻算法(k nearest-neighbor),其主要过程为:

  1. 计算训练样本和测试样本中每个样本点的距离(常见的距离度量有欧式距离,马氏距离等);
  2. 对上面所有的距离值进行排序
  3. 选前k个最小距离的样本;
  4. 根据这k个样本的标签进行投票,得到最后的分类类别;

如何选择一个最佳的K值,这取决于数据。
一般情况下,在分类时较大的K值能够减小噪声的影响,但会使类别之间的界限变得模糊。一个较好的K值可通过各种启发式技术来获取,比如,交叉验证。
另外噪声和非相关性特征向量的存在会使K近邻算法的准确性减小。

k近邻算法具有较强的一致性结果。随着数据趋于无限,算法保证错误率不会超过贝叶斯算法错误率的两倍。对于一些好的K值,K近邻保证错误率不会超过贝叶斯理论误差率。

注:马氏距离一定要先给出样本集的统计性质,比如均值向量,协方差矩阵等。关于马氏距离的介绍如下:
![这里写图片描述](http://images.cnitblog.com/blog/381513/201310/29225128-2a8eb5145f3c46f6aaba72544da7d9aa.png

关于k值的选择:
较小的k值,就相当于用较小的邻域中的训练实例进行预测,近似误差会减小,缺点是估计误差会增大,预测结果会对近邻的实例点非常敏感。如果近邻的实例点恰巧是噪声,预测就会出错,容易发生过拟合。k值的减小意味这模型变得复杂。
较大的k值,优点是可以减小估计误差,缺点是近似误差会增大,k值的增大意味着模型变得简单。在实际应用中,通常k取一个较小的值,采用交叉验证法来选取最优k值。

KNN算法的优点:
1. 思想简单,理论成熟,既可以用来做分类也可以用来做回归
2. 可用于非线性分类;
3. 训练时间复杂度为O(n)
4. 准确度高,对数据没有假设,对outlier不敏感;

缺点:
1. 计算量大;
2. 样本不平衡问题(即有些类别的样本数量很多,而其它样本的数量很少);
3. 需要大量的内存;

GDBT:

GBDT(Gradient Boosting Decision Tree) 又叫 MART(Multiple Additive Regression Tree),好像在阿里内部用得比较多(所以阿里算法岗位面试时可能会问到),它是一种迭代的决策树算法,该算法由多棵决策树组成,所有树的输出结果累加起来就是最终答案。它在被提出之初就和SVM一起被认为是泛化能力(generalization)较强的算法。近些年更因为被用于搜索排序的机器学习模型而引起大家关注。

GBDT是回归树,不是分类树。其核心就在于,每一棵树是从之前所有树的残差中来学习的。为了防止过拟合,和Adaboosting一样,也加入了boosting这一项。

正则化的作用Regularization:

  1. 数值上更容易求解;
  2. 特征数目太大时更稳定;
  3. 控制模型的复杂度,光滑性。复杂性越小且越光滑的目标函数泛化能力越强。而加入规则项能使目标函数复杂度减小,且更光滑。
  4. 减小参数空间;参数空间越小,复杂度越低。
  5. 系数越小,模型越简单,而模型越简单则泛化能力越强(Ng宏观上给出的解释)。
  6. 可以看出是权值的高斯先验。

EM算法:

有时候因为样本的产生和隐含变量有关(隐含变量是不能观察的),而求模型的参数时一般采用最大似然估计,由于含有了隐含变量,所以对似然函数参数求导是求不出来的,这时可以采用EM算法来求模型的参数的(对应模型参数个数可能有多个),EM算法一般分为2步:

E步:选取一组参数,求出在该参数下隐含变量的条件概率值
M步:结合E步求出的隐含变量条件概率,求出似然函数下界函数(本质上是某个期望函数)的最大值。
重复上面2步直至收敛。

这里写图片描述
M步公式中下界函数的推导过程:
这里写图片描述

EM算法一个常见的例子就是GMM模型,每个样本都有可能由k个高斯产生,只不过由每个高斯产生的概率不同而已,因此每个样本都有对应的高斯分布(k个中的某一个),此时的隐含变量就是每个样本对应的某个高斯分布。
GMM的E步公式如下(计算每个样本对应每个高斯的概率):
这里写图片描述
这里写图片描述

M步公式如下(计算每个高斯的比重,均值,方差这3个参数):
这里写图片描述

Boosting:

主要以Adaboost为例,首先来看看Adaboost的流程图,如下:
这里写图片描述
从图中可以看到,在训练过程中我们需要训练出多个弱分类器(图中为3个),每个弱分类器是由不同权重的样本(图中为5个训练样本)训练得到(其中第一个弱分类器对应输入样本的权值是一样的),而每个弱分类器对最终分类结果的作用也不同,是通过加权平均输出的,权值见上图中三角形里面的数值。那么这些弱分类器和其对应的权值是怎样训练出来的呢?

Boosting算法的优点:
低泛化误差;
容易实现,分类准确率较高,没有太多参数可以调;

缺点:
对outlier比较敏感;

聚类:

根据聚类思想划分:

  1. 基于划分的聚类:
    K-means, k-medoids(每一个类别中找一个样本点来代表),CLARANS.
    k-means是使下面的表达式值最小:
    这里写图片描述

k-means算法的优点:
(1)k-means算法是解决聚类问题的一种经典算法,算法简单、快速。
(2)对处理大数据集,该算法是相对可伸缩的和高效率的,因为它的复杂度大约是O(nkt),其中n是所有对象的数目,k是簇的数目,t是迭代的次数。通常k<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值