数学
tina_lulu_21
这个作者很懒,什么都没留下…
展开
-
向量、矩阵乘法的几何意义(一) scalar multiplication VS scalar product
1、scalar multiplication 纯量乘法(1)定义:纯量乘法是指一个标量r与一个向量V(或矩阵M)相乘,其结果为一个向量(矩阵),该向量(矩阵)的每一个元素为标量r与V(M)中对应位置元素的乘积。(2)几何意义: Scaling:对向量(矩阵)各维上的伸(stretch, r>1)缩(shrink, 0)。Scalar multiplication原创 2008-05-20 08:14:00 · 32655 阅读 · 0 评论 -
向量、矩阵乘法的几何意义(二) 矩阵乘法(Matrix Multiplication)
一、 旋转(rotation)1、 矩阵与向量相乘由向量内积(两个向量相乘)出发,考虑矩阵与向量相乘的情况。以二维平面空间为例,设X=(x1, x2, …, xn), xi=(xi1,xi2)T, i=1, 2, …,n为样本矩阵,w=(w1,w2)T为向量(二维平面中的一个有向线段)。矩阵与向量相乘可表示为:<v:shapetype id="_x0000_原创 2008-05-29 20:54:00 · 27999 阅读 · 2 评论 -
对角优势矩阵 diagonally dominant matrix
什么是diagonally dominant matrix?请看本文。原创 2011-04-25 22:33:00 · 10157 阅读 · 0 评论 -
希腊字母发音对照表
小写αβγδεζAlphaBetaGammaDeltaEpsilonZetaνξοπρσNuXiOmicron转载 2011-11-17 19:00:55 · 1463 阅读 · 0 评论