对角优势矩阵 diagonally dominant matrix

       一个矩阵,如果其每一行的非对角元的模之和都小于这一行的对角元的模,即称该矩阵是严格对角优势或强对角优势( strictly diagonally dominant )的。

 

       若矩阵仅满足每一行的非对角元的模之和都小于等于这一行的对角元的模,但至少有一行的非对角元的模之和严格小于这一行的对角元的模,则称改矩阵是弱对角优势的。

 

       这类矩阵有着广泛的实际背景,如很多微分方程边值问题的离散化方程的系数矩阵往往具有上面的性质,因此对这类矩阵的研究是十分重要的。这类矩阵还有一些重要性质,例如,若矩阵A是严格对角优势或不可约弱对角优势的,则 A是非奇异的;若A还是埃尔米特矩阵,且对角元皆为正数,则A是正定的。又如用直接法或迭代法解系数矩阵为对角优势矩阵的线性代数方程组时,可以保证算法的稳定性或收敛性。

 

 

A strictly diagonally dominant matrix is nonsingular. A symmetric diagonally dominant real matrix with nonnegative diagonal entries is positive semidefinite.

If a matrix is strictly diagonally dominant and all its diagonal elements are positive, then the real parts of its eigenvalues are positive; if all its diagonal elements are negative, then the real parts of its eigenvalues are negative. These results follow from the Gershgorin circle theorem.

 

 

http://mathworld.wolfram.com/DiagonallyDominantMatrix.html

 

http://www.hudong.com/wiki/%E5%AF%B9%E8%A7%92%E4%BC%98%E5%8A%BF%E7%9F%A9%E9%98%B5

### 定义 严格对角占优矩阵是指对于任意 \(i\) 行,该行的主对角元绝对值大于同一行其他元素绝对值之和。具体来说,在一个方阵 \(\mathbf{A}\) 中,如果满足如下条件,则称其为严格对角占优矩阵: \[ |a_{ii}| > \sum _{{j=1,j\neq i}}^{n}{|a_{{ij}}}| \] 这里 \(a_{ij}\) 是指矩阵第 \(i\) 行第 \(j\) 列上的元素[^1]。 ### 性质 #### 特征值特性 由于广义严格对角占优矩阵的存在性,可以得知存在正对角矩阵使得特定关系成立。进一步地,通过研究这类矩阵的非零解情况发现,至少有一个分量不等于0 的向量作为解决方案的一部分。这表明了严格对角占优矩阵具有独特的结构特点,有助于理解它们内部元素之间的相互作用方式及其影响下的求解过程。 #### 奇异性判定 根据盖尔圆定理可得,对角占优矩阵不会拥有零特征值;再考虑到行列式的计算方法与特征多项式根的关系,能够推断出此类矩阵必定是非奇异性的,即不存在任何情况下会使整个系统的响应变得无限大或无意义的情况发生[^2]。 #### 对角化可能性 当考虑线性变换时,若某一线性映射能够在给定的空间内找到一组基底让对应的转换矩阵呈现为对角形式的话,那么这就意味着此变换具备\( n \)个彼此之间保持独立状态的特征矢量集合[^3]。虽然这一结论并不直接针对严格对角占优矩阵而设立,但从理论上讲,只要满足一定条件下(比如实数域上),这些特殊类型的矩阵也有可能实现相似标准型转化的目标。 #### 数值稳定性保障 在实际应用领域特别是涉及到迭代算法的设计过程中,像雅克比(Jacobi) 和高斯-赛德尔(Gauss-Seidel) 这样的经典技术依赖于输入数据的良好行为来确保最终结果的有效性和可靠性。而对于那些表现出良好性质——如上述提到过的严格对角优势特性的系数表而言,往往更容易获得稳定快速收敛的效果[^4]。 ```python import numpy as np def is_strictly_diagonally_dominant(matrix): """Check if a matrix is strictly diagonally dominant.""" abs_matrix = np.abs(matrix) diag_abs_sum = np.sum(abs_matrix, axis=1) - np.diag(abs_matrix) return all(np.diag(abs_matrix) > diag_abs_sum) # Example usage: matrix_example = [[9, -2, 3], [-1, 8, 2], [1, -1, 7]] print(is_strictly_diagonally_dominant(matrix_example)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值