Python如何自学:量化交易

119 篇文章 1 订阅
116 篇文章 0 订阅

前言

Python作为一种流行的编程语言,被广泛应用于金融领域,尤其是量化交易。自学Python并将其应用于量化交易可以为您提供更深入的了解金融市场的机会。本文将探讨如何自学Python并将其运用于量化交易,同时提供具体的实例分析。

第一步:学习Python基础

如果您尚未具备Python编程经验,首要任务是学习Python的基础知识。您可以通过在线教育平台如Coursera、edX、或Udemy找到专门为初学者设计的Python课程。学习Python语法、数据结构和基本算法是为量化交易编程奠定坚实基础的关键步骤。

img

第二步:深入了解量化交易基础知识

在着手编程之前,建议您深入了解量化交易的基本原理和概念。学习有关股票、期货、市场指标、风险管理和投资组合理论的知识对于量化交易至关重要。您可以通过阅读书籍、在线课程或参与专业培训来获取这些知识。

第三步:学习Python库和工具

Python拥有众多用于量化交易的开源库和工具,如NumPy、pandas、TA-Lib、Backtrader等。学习如何使用这些库来处理金融数据、开发交易策略和进行回测是非常重要的。以下是一个示例:

示例:使用pandas和NumPy加载和处理股票数据

import pandas as pdimport numpy as np
import yfinance as yf

# 下载股票历史数据
data = yf.download('AAPL', start='2020-01-01', end='2021-01-01')

# 计算每日收益率
data['Returns'] = data['Adj Close'].pct_change()

# 计算移动平均线
data['30_MA'] = data['Adj Close'].rolling(window=30).mean()

# 打印数据
print(data.head())

第四步:开发和回测交易策略

一旦您掌握了Python和量化交易工具,您可以开始开发自己的交易策略。这通常涉及编写算法来识别买入和卖出信号,并使用历史数据进行回测以评估策略的性能。

示例:均线策略

import pandas as pd
# 加载股票数据
data = pd.read_csv('stock_data.csv')

# 计算10日均线
data['10_MA'] = data['Close'].rolling(window=10).mean()

# 计算信号
data['Signal'] = 0
data['Signal'][10:] = np.where(data['Close'][10:] > data['10_MA'][10:], 1, 0)

# 计算收益
data['Returns'] = data['Close'].pct_change() * data['Signal'].shift(1)

# 打印策略表现
print(data[['Date', 'Close', '10_MA', 'Signal', 'Returns']])

第五步:模拟交易和实盘交易

在编写和回测交易策略后,您可以选择使用模拟交易平台来模拟策略的表现,或者进行实际的交易。模拟交易可以帮助您验证策略,而实盘交易则需要谨慎,并确保您了解有关实际交易的规则和费用。

第六步:持续学习和改进

量化交易是一个不断演进的领域,因此持续学习和改进策略至关重要。参与在线社区、阅读相关书籍和研究最新的量化交易技术都是提高自己的方式。

-END-


Python入门全套学习资料附带源码:

全套软件安装包

附带完整的安装包的安装视频教程资源(新手大礼包已备好文末领取

在这里插入图片描述

整套零基础入门视频+课件笔记

img

👉实战案例👈

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

👉100道Python练习题👈

检查学习结果。

👉面试刷题👈

在这里插入图片描述

资料领取

这份完整版的Python全套学习资料已经上传网盘,朋友们如果需要可以点击下方微信卡片免费领取 ↓↓↓【保证100%免费】
或者

点此链接】领取

Python安装包
链接:https://pan.xunlei.com/s/VNlRZOxzhb147tdluq7TWA8DA1?pwd=gx9b#
复制这段内容后打开手机迅雷App,查看更方便

部分福利《看漫画学PythonPDF》
链接:https://pan.xunlei.com/s/VNm4IJCFa20_O9hHoNuKDLdmA1?pwd=557b#
复制这段内容后打开手机迅雷App,查看更方便

  • 23
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
小白量化学习-自创指标设计 一、准备工作 1、首先把“HP_formula.py”文件复制到自己的工程目录中。 2、在新文件开始增加下面4条语句。 import numpy as np import pandas as pd from HP_formula import * import tushare as ts 二、对数据预处理 我们采用与tushare旧股票数据格式。 #首先要对数据预处理 df = ts.get_k_data('600080',ktype='D') mydf=df.copy() CLOSE=mydf['close'] LOW=mydf['low'] HIGH=mydf['high'] OPEN=mydf['open'] VOL=mydf['volume'] C=mydf['close'] L=mydf['low'] H=mydf['high'] O=mydf['open'] V=mydf['volume'] 三、仿通达信或大智慧公式 通达信公式转为python公式的过程。 1.‘:=’为赋值语句,用程序替换‘:=’为python的赋值命令‘='。 2.‘:’为公式的赋值带输出画线命令,再替换‘:’为‘=’,‘:’前为输出变量,顺序写到return 返回参数中。 3.全部命令转为英文大写。 4.删除绘图格式命令。 5.删除掉每行未分号; 。 6.参数可写到函数参数表中.例如: def KDJ(N=9, M1=3, M2=3): 例如通达信 KDJ指标公式描述如下。 参数表 N:=9, M1:=3, M2:=3 RSV:=(CLOSE-LLV(LOW,N))/(HHV(HIGH,N)-LLV(LOW,N))*100; K:SMA(RSV,M1,1); D:SMA(K,M2,1); J:3*K-2*D; # Python的KDJ公式 def KDJ(N=9, M1=3, M2=3): RSV = (CLOSE - LLV(LOW, N)) / (HHV(HIGH, N) - LLV(LOW, N)) * 100 K = SMA(RSV,M1,1) D = SMA(K,M2,1) J = 3*K-2*D return K, D, J #----------------------------------- #根据上面原理,我们把大智慧RSI指标改 # 为Python代码,如下。 def RSI(N1=6, N2=12, N3=24): """ RSI 相对强弱指标 """ LC = REF(CLOSE, 1) RSI1 = SMA(MAX(CLOSE - LC, 0), N1, 1) / SMA(ABS(CLOSE - LC), N1, 1) * 100 RSI2 = SMA(MAX(CLOSE - LC, 0), N2, 1) / SMA(ABS(CLOSE - LC), N2, 1) * 100 RSI3 = SMA(MAX(CLOSE - LC, 0), N3, 1) / SMA(ABS(CLOSE - LC), N3, 1) * 100 return RSI1, RSI2, RSI3 四、使用公式并绘图 #假定我们使用RSI指标 r1,r2,r3=RSI() mydf = mydf.join(pd.Series( r1,name='RSI1')) mydf = mydf.join(pd.Series( r2,name='RSI2')) mydf = mydf.join(pd.Series( r3,name='RSI3')) mydf['S80']=80 #增加上轨80轨迹线 mydf['X20']=20 #增加下轨20轨迹线 mydf=mydf.tail(100) #显示最后100条数据线 #下面是绘线语句 mydf.S80.plot.line() mydf.X20.plot.line() mydf.RSI1.plot.line(legend=True) mydf.RSI2.plot.line(legend=True) mydf.RSI2.plot.line(legend=True) 不懂就看我的博客 https://blog.csdn.net/hepu8/article/details/93378543

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值