Anaconda+PyCharm创建环境及超详细配置指南,看这一篇就够了

119 篇文章 1 订阅
116 篇文章 0 订阅

前言

为什么是Python

Python是一种面向对象的解释型计算机程序设计语言。

Python简单易用,功能强大,应用领域广泛,遍及人工智能、科学计算、机器学习、网络爬虫、大数据及云计算等。

一个语言能够这么广泛应用的前提,就是因为Python具有数量庞大且功能相对完善的标准库和第三方库。

然而,正是由于库的数量庞大,对于管理这些库以及对库作及时的维护成为既重要但复杂度又高的事情。

例如,在实际项目开发中,我们通常会根据自己的需求去下载各种相应的框架库,如numpy,requests等,但是可能每个项目使用的框架库并不一样,或使用框架的版本不一样,这样需要我们根据需求不断的更新或卸载相应的库。

直接在系统默认环境安装会让我们的开发环境和项目造成很多不必要的麻烦,管理也相当混乱。
这时候,我们需要一个独立的环境,就是常说的Python虚拟环境解决方案。

虚拟环境提供了一个独立的空间,独立的环境,不同的项目可以在各自的环境中调用第三方工具,使用虚拟环境中的解释器。同时开发多个项目时,更加方便。

python的虚拟环境有pipenv, virtualenv, conda(Anaconda)。 这里我们选用的是Anaconda方案,下文会有具体介绍。

python官网:https://www.python.org/
python英文文档:https://docs.python.org/3/
python中文文档:https://docs.python.org/zh-cn/3/

Anaconda

介绍

Anaconda就是可以便捷获取包且对包能够进行管理,同时对环境可以统一管理的发行版本。
Anaconda包含了conda、Python在内的超过180个科学包及其依赖项。

简单来说,Anaconda包含了一堆常用的包,Anaconda提供了一套完整的虚拟环境解决方案,Anaconda提供了完善的包管理方案。

Anaconda官网:https://www.anaconda.com/
Anaconda英文文档:https://docs.anaconda.com/
Anaconda中文文档:https://anaconda.org.cn/

Anaconda是一个软件发行版,使用了conda进行包和环境管理。
后文说的很多命令,都是conda开头,在这里做下简单的说明。

Anaconda安装

下载地址:https://www.anaconda.com/products/distribution#macos
下载适合的环境,按照安装手册,一步步安装就可以了。

安装器若提示"Do you wish the installer to prepend the Anaconda install location to PATH in your .bash_profile?"

你希望安装器添加Anaconda安装路径在.bash_profile文件中吗?
建议输入“yes”。

验证安装结果: 打开终端,看到命令行最前面是否有(base),这是Anaconda的默认安装环境:

在这里插入图片描述

或者输入命令 conda list 看一下环境里面的包:

在这里插入图片描述

安装后,可以使用conda update conda进行更新:

在这里插入图片描述

Anaconda新建环境

conda create -n env_name,其中 -n env_name 指定了环境的名字

img

切换到创建好的环境:

在这里插入图片描述

环境相关的命令:

创建虚拟环境  
conda create -n xxx
进入虚拟环境  
conda activate xxx
退出虚拟环境  
conda deactivate
删除虚拟环境  
conda remove --name xxx --all

Anaconda 包安装

一般采用conda install 或者 pip install 安装包,这两个命令的区别在于:

pip

是用来安装python包的,安装的是python wheel或者源代码的包。从源码安装的时候需要有编译器的支持,pip也不会去支持python语言之外的依赖项。

conda

是用来安装conda package,虽然大部分conda包是python的,但它支持了不少非python语言写的依赖项,比如mkl cuda这种c c++写的包。然后,conda安装的都是编译好的二进制包,不需要你自己编译。所以,pip有时候系统环境没有某个编译器可能会失败,conda不会。

conda的优势:包之间严格的依赖检查;是一个超越Python的环境管理器。

推荐使用conda来安装包,如果安装失败,再尝试用pip进行安装。

Anaconda环境复制

很多时候,我们新建一个项目,或者一个项目的新版本,都基于之前项目使用的虚拟环境创建,所以需要进行环境的复制操作。

本地环境复制

conda create -n 新环境名 --clone 旧环境名 conda create -n BBB --clone AAA

非本地环境复制

  1. 首先激活环境: conda activate xxx
  2. 生成yaml文件: conda env export > xxx.yaml
  3. 复制到新的系统下后:执行 conda env create -f xxx.yaml

pip安装包的非本地同步

  1. 导出pip安装的包: pip freeze > requirements.txt
  2. 将requirements.txt 文件同步到新的机器或者环境中
  3. pip导入包:pip install -r requirements.txt

Conda其它常用命令

  1. conda --version( 验证conda已被安装)
  2. conda update conda(更新conda至最新版本)
  3. conda list -n (查看指定环境下已安装包列表)
  4. conda list(查看当前环境下已安装包列表)
  5. conda env list(查看所有环境列表)
  6. conda --version (查看conda版本,验证是否安装)
  7. conda update conda (更新至最新版本,也会更新其它相关包)
  8. conda update --all (更新所有包)
  9. conda update package_name (更新指定的包)

PyCharm

介绍

PyCharm是由大名鼎鼎的JetBrains打造的一款Python IDE。

带有一整套可以帮助用户在使用Python语言开发时提高其效率的工具,比如调试、语法高亮、Project管理、代码跳转、智能提示、自动完成、单元测试、版本控制。

对于新人来说,推荐使用IDE进行开发,可以在学习过程中聚焦与核心问题,而不是被环境配置以及各种命令工具影响。 PyCharm自带对Anaconda(conda)环境的支持。 PyCharm有社区版本和专业版本,这里主要介绍社区版本,社区版本是免费的。

PyCharm下载和安装

PyCharm官网:https://www.jetbrains.com/pycharm/
PyCharm下载地址:https://www.jetbrains.com/pycharm/download/ 选择Community版本即可。

PyCharm工程建立:使用conda

打开一个工程的时候,如果你的本地已经安装好了Anaconda,就会看到conda选项:

在这里插入图片描述

选择以后,PyCharm会为这个新的工程,创建一个全新的虚拟环境,环境名称就是工程名称。

-END-


为了感谢读者们一直以来的支持,我把自己的学习资料免费分享给喜欢编程的宝子们,希望对你们有帮助。

Python入门全套学习资料附带源码:

全套软件安装包

附带完整的安装包的安装视频教程资源(新手大礼包已备好文末领取

在这里插入图片描述

整套零基础入门视频+课件笔记

img

👉实战案例👈

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

👉100道Python练习题👈

检查学习结果。

👉面试刷题👈

在这里插入图片描述

资料领取

上述这份完整版的Python全套学习资料已经上传网盘,朋友们如果需要可以微信扫描下方二维码输入“领取资料” 即可自动领取
或者

点此链接】领取

学习方法

学习python,我觉得一定要快,用最快的时间快速入门,千万不要学困难的东西,先挑简单的来,越快越好,以免打击了你学习的积极性。

找到一个切入点,比如爬虫就是一个十分有趣的切入点,学会了爬虫你就可以从网站上“偷数据”,还可以把这些数据拿来卖钱,你说好不好。

总结

好啦,这就是今天的内容,入门知识点资料免费发送的哈,想要的小伙伴儿不要错过,带你直

接弯道超车,少走一大波弯路,准备好了嘛?!我们要开始学习一项编程技术啦!

img

  • 25
    点赞
  • 51
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: 在anaconda+pycharm环境配置pytorch可以按照如下步骤进行: 1. 打开anaconda创建一个新的虚拟环境,例如命名为“pytorch_env”。 2. 在命令行中使用conda activate pytorch_env命令激活虚拟环境。 3. 在命令行中使用conda install pytorch torchvision cudatoolkit=10.2 -c pytorch命令安装pytorch和必要的依赖。 4. 在pycharm创建一个新的项目,并在项目中创建一个新的python文件。 5. 在python文件中导入pytorch库,并开始编写代码。此时可以利用pycharm的代码补全功能来快速编写代码。 6. 运行代码,如果无误则完成了在anaconda+pycharm环境配置pytorch的操作。 ### 回答2: 在Anaconda Pycharm环境下进行PyTorch配置,需要执行以下步骤: 第一步:安装Anaconda,选择Python3.6的版本即可,并将Anaconda添加到PATH环境变量中。 第二步:安装PyTorch 使用以下命令进行PyTorch安装。 CPU版本:conda install pytorch-cpu torchvision-cpu -c pytorch GPU版本:conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch -c nvidia 在Terminal窗口中输入该命令即可进行安装,安装完成后可通过 import torch print(torch.__version__) 进行验证,确认PyTorch是否正确安装。 第三步:安装PyCharm 官网下载安装标准版Pycharm即可。 第四步:创建Python Project 在Pycharm创建Python Project,并选择已安装的Python版本。 第五步:配置PyTorch环境 打开Pycharm的Terminal窗口,输入以下命令进行环境安装: conda activate <pytorch_env> 其中,pytorch_env为PyTorch安装环境的名称。 以上配置完成后,Anaconda Pycharm环境下的PyTorch配置就完成了,可以使用PyTorch进行开发。 ### 回答3: anaconda是一个流行的Python环境和包管理器,PyCharm是一个常用的Python IDE。PyTorch是一个深度学习框架。在使用PyTorch进行深度学习的过程中,搭建好适合自己的环境是一个必要的步骤。这里介绍在anaconda pycharm环境下的pytorch配置方法。 第一步:安装anaconda 官网下载对应操作系统版本的anaconda后,按照安装提示操作即可。 第二步:创建conda虚拟环境 使用以下命令创建一个名为pytorch的conda虚拟环境: conda create --name pytorch python=3.8 该命令会创建一个Python版本为3.8的conda环境。 第三步:激活并进入虚拟环境 使用以下命令激活名为pytorch的conda虚拟环境: conda activate pytorch 该命令会激活名为pytorch的conda虚拟环境。 第四步:安装pytorch 在激活的虚拟环境下,使用以下命令安装PyTorch: conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch -c nvidia 该命令将安装最新版本的PyTorch和TorchVision并配合CUDA 11.1版本进行编译。 第五步:在PyCharm中使用虚拟环境PyCharm中打开项目,依次选择File->Settings->Project->Python Interpreter,然后点击下拉菜单选择“Add”,在弹出的窗口中选择“Conda Environment”,并在“Interpreter”处选择刚刚创建的虚拟环境“pytorch”。点击“Ok”后,PyCharm将开始配置虚拟环境配置完成后,在PyCharm的“Terminal”中即可使用虚拟环境中安装的PyTorch进行深度学习模型的训练等任务。 总之,以上就是在anaconda pycharm环境下的pytorch配置方法。要么自己去搭建,要么使用已有的工具,搭建好适合自己的环境是重中之重。希望以上方法能够帮助到大家,让使用PyTorch进行深度学习的过程更加高效便捷。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值