第三部分 数据结构(一)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/tingyue_/article/details/77248422

第三部分 数据结构

前言

该部分主要介绍算法中常用的数据结构:数组,栈,队列,链表和有根树以及定义在这些数据结构中操作。这些操作主要分作两大类:查询操作和修改操作,常见的查询操作有search,minimum,maximum,successor,predecessor;修改操作有insert,delete。

之后本部分对有根树做了详细介绍:二叉搜索树,红黑树等,并基于红黑树对数据结构的扩张进行阐述。

第十章 基本数据结构

本章介绍几种基本的数据结构:栈,队列,链表,有根树。在章节末,介绍了用数组构造对象和指针的方法(适当了解即可,无需深究)

栈是一种运算受限的线性表,它仅允许在表的一端进行插入和删除运算,且后插入的元素先删除,称为后进先出(LIFO)。汉诺塔问题其中就有栈的概念,后放入的盘子先被拿出。

基本操作(假设栈的容量为n

stack_operation

队列

队列同样是一种运算受限的线性表,它允许在表的一端插入元素,而从表的另一端删除元素(插入的一端称为队尾,操作称为入队,删除的一端称为队头,操作称为出对),称为先进先出(FIFO)。像在银行排队办理业务就是队列的日常实例。

栈和队列都是动态集合

注意队列的Q.TailQ.head的大小关系的并非固定的,换句话说,存在Q.Tail<Q.Head的情况,因为队列在具体实现时,空间是循环利用的,它可以通过取余操作使得数组空间首尾连接(imodA.capasity+1

基本操作(假设队列的容量为n

queue_operation

链表

链表是一种物理存储单元上非连续,非顺序的存储结构,也就是说,数据元素的逻辑顺序并不是通过物理单元的次序来表达,而是通过链表中元素指针的链接次序来表达。

根据每个元素的指针个数,链表又可以分为单向链表和双向链表:单向链表只有一个指针,且指向它的下一个元素(也就是它的后继);双向链表有两个指针,一个指向下一元素,一个指向上一元素(前驱)。

在链表中,有一个特殊情况,表尾的指针指向表头,这样的表成为循环链表;双向链表中,表头和表尾也是相互指向对方的。

这里要提出一个概念:哨兵,它是链表中的一个哑对象,也就是说,它的关键字key并没有实际含义,它的出现只是为了出来表头和表尾的边界条件,能够使得代码可读性更好,代码更为简洁。但有些时候,哨兵的使用也会造成资源的浪费,比如有很多短链表,每个链表都设置哨兵的话,其存储开销还是很大的。

基本操作(以双向链表为例)

list_operation

加入哨兵(使得操作更为简洁)

sen_list_operation01

sen_list_operation02

有根树

有根树和链表一样,都是通过指针来表达数据元素之间的逻辑顺序。但它和链表不同的是,它的后继不止一个(当然,在有根树中,我们给它新的名称,我们称之为子结点);对应于,链表中的前驱,我们在树中称之为父结点。最开始的结点,我们称之为根结点,只有根结点没有父结点。

有根树中最常用的就是二叉树,也就是说树中每个结点最多只有两个孩子,我们分别称为左孩子右孩子。二叉树的表达方式是每个结点有三个指针:p,left,right,分别指向父结点,左孩子和右孩子。

除了二叉树以及其它有结点最大限制的树外,还存在分支无限制的有根树。分支无限制的有根树如果采用二叉树的表达方式,势必会导致资源的巨大浪费,而且我们也无法预知分配多少存储空间(分支无限制,没办法预知子结点的个数),所以一种新的表达方式则更具有优势,它被称为左孩子右兄弟表示法

关于数组实现对象和指针

这个就不做介绍啦。

第十一章 散列表

散列表也称哈希表,它是通过关键字进行直接访问的数据结构,这一点和数组很像,所以我们其实也可以把它看成是数组概念的推广,它们都能在O(1)时间内完成对元素的访问。和数组不同的是,数组的关键字就是数据元素的存储下标,而散列表则是通过散列函数将关键字映射到表的相关位置。散列表的目的是为了在常数时间内完成数据元素的查询,插入和删除工作。

散列表相对于数组的优势:当实际存储的关键字数目比全部可能的关键字要小时,采用散列表可以节省大量的存储空间。

由于散列函数将关键字映射到表的下标时,存在着多个关键字映射到同一下标中的情况,这种情况我们称之为冲突。这时一般可采用“链表法”“开放寻址法”

直接寻址表(直接寻址数组)是关键字全域|U|较小时使用的一种技术。关键字即为表的下标。

由上面的话,我们也能了解到:如果关键字全域很大时,而计算机的内存容量又是有限的,采用直接寻址技术要想存储大小为|U|的表不太实际,甚至是不可能的。通常来说实际存储的关键字集合|K|要比全域|U|小得多,为了防止存储空间的浪费,同时又获取其高效的访问效率。于是新的数据结构——散列表被提出。

散列表的核心在于散列函数,一个好的散列函数应(近似地)满足简单均匀散列假设:每个关键字都被等可能地散列到m个槽位中的任何一个,并与其他关键字已散列到哪个槽位无关。之后我们会说明,对于满足简单均匀散列假设的散列函数,在其构建的散列表上,如果采用链接法解决冲突,完成一次查询的平均时间都是Θ(1+α)(无论查询是否成功,α为装载因子

链接法中常用的散列方法:除法散列,乘法散列,全域散列

开放寻址法中常用的散列方法:线性探查,二次探查,双重探查

说了这么多,开始对上面说的一些知识点进行更具体的分析啦!

链接法散列的分析(散列函数满足简单均匀散列假设)

  • 装载因子:给定一个能存放n个元素的,具有m个槽位的散列表TT的装载因子α即为其一个槽位中链表平均存储的元素个数。

  • 链接法散列的最坏情况性能很差,如果所有关键字都散列到同一个槽中,则相当于一个长度为n的链表,这时它的查找时间为Θ(n)。当然,一般情况来说,散列表不会出现最坏情况,如果散列函数经过精心设计的话,其查找的期望时间一般都为常数。

  • 查询操作 定理:在简单均匀散列的假设下,对于用链接法解决冲突的散列表,一次成功或不成功的查找平均时间均为Θ(1+α)

    证明:

    (查找不成功)

    在简单均匀散列的假设下,任何尚未被存储在表中的关键字k都等可能地被散列在m个槽中的任何一个。当查找一个关键字k不成功的情况下,查找的期望时间就是查找至链表T[h(k)]末尾的期望时间,这个时间的期望长度为E[nh(k)]=α,所以,一次不成功的查找平均要检查α个元素,所需总时间(包含计算h(k)的时间)为Θ(1+α)

    (查找成功)

    怎么去分析这个问题?

    由于我们查找成功,说明元素x必定是这n个元素中的一个且是等可能的。由散列表的插入性质(元素首先根据散列函数计算出关键字对应槽位,之后从对应槽位链表的表头插入),我们可知只有在元素x之后的元素有可能插入在x之前。而如果我们成功查找到x,其实只需要查询x所在链表,在x之后插入到表中的期望元素数加1。我们假设元素xi是第i个元素,并且设ki=xi.key,对关键字kikj,定义指示器变量Xij=I{h(ki)=h(kj)}。在简单均匀散列假设下,有Pr(h(ki)=h(kj))=1/m,从而有E[Xij]=1/m。所以一次成功查找所检查的元素期望数目为

    E[1ni=1n(1+j=i+1nXij)]=1ni=1n(1+j=i+1nE[Xij])=1ni=1n(1+j=i+1n1m)=1+1ni=1nj=i+1n1m=1+1nmi=1n(ni)=1+1nm[i=1nni=1ni]=1+1nm(n2n(n+1)2)=1+n12m=1+α2+α2n

    所以,一次成功查找所需的全部时间(包括计算散列函数时间)为Θ(1+1+α2+α2n)=Θ(1+α)

    上述定理说明,查询操作平均需要常数时间。

  • 插入操作:将散列到同一槽中的所有元素都放在同一链表中,且从表头插入元素,所以可知插入操作的最坏情况运行时间为O(1)

  • 删除操作:删除操作需要根据使用的链表类型(单向链表和双向链表),以及元素输入类型(指针x或关键字key)不同分别考虑。

    对于元素输入类型为关键字key时,删除操作最坏情况运行时间为O(n),平均运行时间与查找操作相同,为Θ(1+α)(假设满足简单均匀散列假设);

    对于元素输入类型为指针x时,采用单向链表的散列表删除操作最坏情况运行时间为O(n),平均运行时间与查找操作相同,为Θ(1+α)(假设满足简单均匀散列假设);而双向链表最坏情况运行时间为O(1)

    一般,将查询,插入,删除操作称为字典操作。散列表的字典操作平均情况都可以在O(1)时间内完成。

散列函数

除法散列

h(k)=kmodm

m一般选择一个不太接近2的整数幂的素数。

乘数散列

h(k)=m(kAmod1)

常数0<A<1kAmod1表示取kA的小数部分,等价于kAkA

优点:对m的选择不是特别关键

全域散列

hab(k)=((ak+b)modp)modm

从一组精心设计的函数中,随机地选择一个作为散列函数。

全域散列的平均性态是比较好的,有推论,利用全域散列法和链接法解决冲突的散列表,查询,插入和删除三种基本字典操作平均情况的运行时间为O(1)

开放寻址法

在开放寻址法中,所有元素都存放在散列表中,也就是说,每一个表项中或包含一个元素,或包含NIL,再换句话说,就是装载因子α1

探查:为使用开放寻址法插入一个元素,连续地检查散列表,直到找到一个空槽来放置待插入的关键字为止。

为了确定要探查哪些槽,我们对散列函数进行扩充,使得探查号(从0开始)也成为第二个输入参数,其散列函数形式为

h:U×{0,1,...,m1}{0,1,...,m1}

对于每一个关键字,探查序列为<h(k,0),h(k,1),...,h(k,m1)>

线性探查

h(k,i)=(h(k)+i)modm;i=0,1,...,m1

h为普通散列函数,在这里作为辅助散列函数。

线性探查容易出现一次群集的问题。

二次探查

h(k,i)=(h(k)+c1i+c2i2)modm;i=0,1,...,m1

h为辅助散列函数,c1,c2为正辅助常量。。

二次探查容易出现二次群集的问题,此为轻度群集。

双重探查

h(k,i)=(h1(k)+ih2(k))modm;i=0,1,...,m1

h1,h2均为辅助散列函数。为了能够查找整个散列表,值h2(k)必须要与m互素。

一个例子:取m是2的幂,并设计总产生奇数的h2

开放寻址散列的分析

  • 给定一个装载因子为α=n/m<1的开放寻址散列表,并假设是均匀散列的,则对于一次不成功的查找,其期望探查次数至多为1/(1α);由此可以推知插入一个元素至多需要做1/(1α)次探查,因为关键字被放入第一个遇到的空槽中。

  • 定一个装载因子为α=n/m<1的开放寻址散列表,并假设是均匀散列的,则对于一次不成功的查找,其期望探查次数至多为1αln11α;由此可知,删除一个元素至多需要1αln11α次探查。

    假设散列表是半满α=n/m=50%的,一次不成功查找的平均探查次数至多为1/(10.5)=2,一次成功查找的平均探查次数至多为1/0.5ln(1/(10.5))<1.387

    假设散列表是α=n/m=90%满的,一次不成功查找的平均探查次数至多为1/(10.9)=10,一次成功查找的平均探查次数至多为1/0.9ln(1/(10.9))<2.559

完全散列(perfect hashing)

采用两级散列方案实现完全散列。完全散列适用场景:关键字集合是静态的(静态:一旦关键字存入表中,关键字集合就不再变化)。如,程序设计语言的保留字集合,CD-ROM上的文件名集合。

完全散列概念描述

首先利用从某一全域散列函数簇中仔细挑选出的一个散列函数h,将n个关键字散列到m个槽中;

然后,和链表法不同的是,我们并不将落在同一槽中的关键字用链表链接来解决冲突,而是采用精心选择的散列函数hj来实现,也就是说,我们通过两级散列来实现元素存储和解决冲突。

合理选择第一级散列函数,以及第二级散列函数的空间需求

为了确保在第二级上不出现冲突,需要让散列表Sj的大小mj是散列到槽j中关键字nj的平方。虽然这样看上去,由于mjnj的二次依赖使得总体空间需求量很大,但是其实我们可以通过适当的选择第一级散列函数,将预期使用的总体存储空间限制在O(n)内。

完全散列的几条定理

  • 定理1:如果从一个全域散列函数类中随机选出散列函数h,将n个关键字存储在一个大小为m=n2的散列表中,那么表中出现冲突的概率小于1/2

    证明:n个关键字,则有(n2)对关键字可能发生冲突,如果散列函数从全域散列函数类中选出,则每对关键字发生冲突的概率为1/m,设X是一个统计冲突次数的随机变量,当m=n2时,期望的冲突次数为

    E[X]=(n2)1m=n(n1)21n2<12

  • 定理2:如果从某一个全域散列函数类中随机选出散列函数h,用它将n个关键字存储在一个大小为m=n的散列表中,则有E[m1j=0n2j]<2n,这里nj为散列到槽j中的关键字数。

    证明:我们有数学恒等式:a2=a+2(a2),于是有

    E[j=0m1n2j]=E[j=0m1(nj+2(nj2))]=E[j=0m1nj]+2E[j=0m1(nj2))]=n+2E[j=0m1(nj2)]

    其中m1j=0(nj2)是散列表中发生冲突的关键字的总对数,根据全域散列性质,这一和式期望至多为
    (n2)1m=n(n1)2m=n12

    所以,有
    E[j=0m1n2j]n+2n12=2n1<2n

  • 推论1:如果从某一全域散列函数类中随机选出散列函数h,用它将n个关键字存储在一个大小m=n的散列表中,并将每一个二级散列表的大小设置为mj=n2j(j=0,1,...,m1),则在一个完全散列方案中,存储在所有二次散列表中所需的存储总量的期望值小于2n

    证明:

    mj=n2jE[j=0m1mj]=E[j=0m1n2j]<2n

  • 推论2:如果从某一个全域散列函数类中随机选出散列函数h,用它将n个关键字存储到一个大小为m=n的散列表中,并将每个二级散列表的大小置为mj=n2j(j=0,1,...,m1),则用于存储所有二级散列表的存储总量等于或大于4n的概率小于1/2

    证明:由马尔科夫不等式Pr{Xt}E[X]/t可推知

    Pr{j=0m14n}E[m1j=0mj]4n<2n4n=1/2

    推论2中可以看出,只需从全域散列函数类中随机选出几个散列函数,尝试几次就可以快速地找到一个所需存储量较为合理的函数。

展开阅读全文

没有更多推荐了,返回首页