题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3853
说真的,一开始碰到dp就头疼,一个是自己容易被绕进去,另一个是自己总是不能正确的找到状态转移。再一个就是自己的代码量还不够,总是不能很完整的考虑边界情况,很完整的把问题写对。dp题就是这样,一点点写错就会发生莫名其妙的错误,然后debug花上好久。
下定决心啃dp这块硬骨头。
这是一道概率dp入门题。(似乎算期望的都是比较简单的dp题)
dp[i][j]表示在i,j这个点到达终点的能量消耗期望,那么边界情况就是终点dp[r][c]=0;
然后就是状态转移dp[i][j]=dp[i][j+1]*p[i][j][1]+dp[i+1][j]*p[i][j][2]+dp[i][j]*p[i][j][0]+2;
该点的步数期望=右边这个点的期望*这个点向右边走的概率+下边这个点的期望*这个点向下走的概率+这个点的期望*不动的概率+2;
但是dp的无后效性必须保证转移过程中等式两边不能出现相同的东西。
所以简单处理就是移项,除掉。
代码如下
#include<iostream>
#include<cstring>
#include<iomanip>
#include<cstdio>
using namespace std;
int r,c;
double p[1001][1001][3];
double dp[1001][1001];
int main(){
while(scanf("%d%d",&r,&c)!=EOF){
for(int i=1;i<=r;i++)
for(int j=1;j<=c;j++)
scanf("%lf%lf%lf",&p[i][j][0],&p[i][j][1],&p[i][j][2]);//停留,向右,向下的概率
memset(dp,0,sizeof(dp));//赋初值
for(int i=r;i>=1;i--){
for(int j=c;j>=1;j--){
if(i==r&&j==c)continue;//终点特判不操作
if(p[i][j][0]==1)continue;//特殊点始终保留原地的不操作,因为会出现/0
dp[i][j]=(p[i][j][1]*(dp[i][j+1])+p[i][j][2]*(dp[i+1][j])+2)/(1-p[i][j][0]);
}
}
printf("%.3f\n",dp[1][1]);
}
return 0;
}