模拟散列表<详细解题过程>

   存储结构1.开放寻址法2.拉链法
哈希表 
        字符串哈希方式

-10e9~10e9;
映射到h(x)  0~1e5;

1、 xmod 1e5 属于范围
2、可以会产生冲突 因为数据范围过大的原因

与离散化的区别
离散化需要保序例如单调递增//可以看成是极其特殊的一种哈希方式
1、拉链法
操作
1可以添加一个数h(x)
2查找一个数:
看一下h(x)在哪个槽上
遍历一个这个槽对应的链表
3如果要实现删除一个数
不会真的删除开一个bool数组如果删除标记一下就可以
自信点就是邻接表
0   1   2   3   4        10e5
        |        |
       [11]     []
        |        |
       [13]     []
                 |
                []
顾名思义拉链子    链子长度看成一样的1就行   
开一个槽h[N];
拉一个链表
idx表示当前用到哪一个位置;
e[N]ne[N]表示当前的数值和下一个位置在什么地方;
k是哈希值
拉一个链表
memset(h,-1,sizeofh);把所有的槽清空一下空指针一般用-1表示
intsert
1      k    1e5
       |  o e[idx]=x ne[idx]=h[x] h[x]=idx++;  idx后++;
      []
       |
      []

#include <cstring>
#include <iostream>

using namespace std;

const int N = 100003;

int h[N], e[N], ne[N], idx;

void insert(int x)
{
    int k = (x % N + N) % N;
    e[idx] = x;
    ne[idx] = h[k];
    h[k] = idx ++ ;
}

bool find(int x)
{
    int k = (x % N + N) % N;
    for (int i = h[k]; i != -1; i = ne[i])
        if (e[i] == x)
            return true;

    return false;
}

int main()
{
    int n;
    scanf("%d", &n);

    memset(h, -1, sizeof h);

    while (n -- )
    {
        char op[2];
        int x;
        scanf("%s%d", op, &x);

        if (*op == 'I') insert(x);
        else
        {
            if (find(x)) puts("Yes");
            else puts("No");
        }
    }

    return 0;
}

开放寻址法
一般开一个一维数组不用拉链子
一般是开到题目描述数组的2——3倍十万就开成二十万

添加
[][][][1][1][1][1][][][]
先找到k然后从第k个坑位开始
直到找到一个空的坑位置插进去

查找
先找到k然后从第k个坑位开始
如果当前坑位有人并且是x我们就找到了
如果当前坑有人不是坑我们就看下一个坑
如果当前坑没人就是不存在

删除[一般用不到]
一般找到x在数组当中标记一下

先找到大于二十万的最小质数

for(int i=200000;;i++)
{
    bool fg=1;
    for(int j=2;j*j<i;j++)
    {
        fg=0;
        break;
    }
    if(fg)
    {
        cout<<i<<endl;
        break;
    }
}


运行得出200003

find函数如果x在哈希表中的话
则返回x的位置如果不在的话就返回x应该存放的位置

#include <cstring>
#include <iostream>

using namespace std;

const int N = 200003, null = 0x3f3f3f3f;

int h[N];

int find(int x)
{
    int t = (x % N + N) % N;
    while (h[t] != null && h[t] != x)
    {
        t ++ ;
        if (t == N) t = 0;
    }
    return t;
}

int main()
{
    memset(h, 0x3f, sizeof h);

    int n;
    scanf("%d", &n);

    while (n -- )
    {
        char op[2];
        int x;
        scanf("%s%d", op, &x);
        if (*op == 'I') h[find(x)] = x;
        else
        {
            if (h[find(x)] == null) puts("No");
            else puts("Yes");
        }
    }

    return 0;
}

作者:一万小时定律
链接:https://www.acwing.com/solution/content/122014/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值