模拟散列表<详细解题过程>

   存储结构1.开放寻址法2.拉链法
哈希表 
        字符串哈希方式

-10e9~10e9;
映射到h(x)  0~1e5;

1、 xmod 1e5 属于范围
2、可以会产生冲突 因为数据范围过大的原因

与离散化的区别
离散化需要保序例如单调递增//可以看成是极其特殊的一种哈希方式
1、拉链法
操作
1可以添加一个数h(x)
2查找一个数:
看一下h(x)在哪个槽上
遍历一个这个槽对应的链表
3如果要实现删除一个数
不会真的删除开一个bool数组如果删除标记一下就可以
自信点就是邻接表
0   1   2   3   4        10e5
        |        |
       [11]     []
        |        |
       [13]     []
                 |
                []
顾名思义拉链子    链子长度看成一样的1就行   
开一个槽h[N];
拉一个链表
idx表示当前用到哪一个位置;
e[N]ne[N]表示当前的数值和下一个位置在什么地方;
k是哈希值
拉一个链表
memset(h,-1,sizeofh);把所有的槽清空一下空指针一般用-1表示
intsert
1      k    1e5
       |  o e[idx]=x ne[idx]=h[x] h[x]=idx++;  idx后++;
      []
       |
      []

#include <cstring>
#include <iostream>

using namespace std;

const int N = 100003;

int h[N], e[N], ne[N], idx;

void insert(int x)
{
    int k = (x % N + N) % N;
    e[idx] = x;
    ne[idx] = h[k];
    h[k] = idx ++ ;
}

bool find(int x)
{
    int k = (x % N + N) % N;
    for (int i = h[k]; i != -1; i = ne[i])
        if (e[i] == x)
            return true;

    return false;
}

int main()
{
    int n;
    scanf("%d", &n);

    memset(h, -1, sizeof h);

    while (n -- )
    {
        char op[2];
        int x;
        scanf("%s%d", op, &x);

        if (*op == 'I') insert(x);
        else
        {
            if (find(x)) puts("Yes");
            else puts("No");
        }
    }

    return 0;
}

开放寻址法
一般开一个一维数组不用拉链子
一般是开到题目描述数组的2——3倍十万就开成二十万

添加
[][][][1][1][1][1][][][]
先找到k然后从第k个坑位开始
直到找到一个空的坑位置插进去

查找
先找到k然后从第k个坑位开始
如果当前坑位有人并且是x我们就找到了
如果当前坑有人不是坑我们就看下一个坑
如果当前坑没人就是不存在

删除[一般用不到]
一般找到x在数组当中标记一下

先找到大于二十万的最小质数

for(int i=200000;;i++)
{
    bool fg=1;
    for(int j=2;j*j<i;j++)
    {
        fg=0;
        break;
    }
    if(fg)
    {
        cout<<i<<endl;
        break;
    }
}


运行得出200003

find函数如果x在哈希表中的话
则返回x的位置如果不在的话就返回x应该存放的位置

#include <cstring>
#include <iostream>

using namespace std;

const int N = 200003, null = 0x3f3f3f3f;

int h[N];

int find(int x)
{
    int t = (x % N + N) % N;
    while (h[t] != null && h[t] != x)
    {
        t ++ ;
        if (t == N) t = 0;
    }
    return t;
}

int main()
{
    memset(h, 0x3f, sizeof h);

    int n;
    scanf("%d", &n);

    while (n -- )
    {
        char op[2];
        int x;
        scanf("%s%d", op, &x);
        if (*op == 'I') h[find(x)] = x;
        else
        {
            if (h[find(x)] == null) puts("No");
            else puts("Yes");
        }
    }

    return 0;
}

作者:一万小时定律
链接:https://www.acwing.com/solution/content/122014/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

《RSMA与速率拆分在有限反馈通信系统中的MMSE基预编码实现》 本文将深入探讨RSMA(Rate Splitting Multiple Access)技术在有限反馈通信系统中的应用,特别是通过MMSE(Minimum Mean Square Error)基预编码进行的实现。速率拆分是现代多用户通信系统中一种重要的信号处理策略,它能够提升系统的频谱效率和鲁棒性,特别是在资源受限和信道条件不理想的环境中。RSMA的核心思想是将用户的数据流分割成公共和私有信息两部分,公共信息可以被多个接收器解码,而私有信息仅由特定的接收器解码。这种方式允许系统在用户间共享信道资源,同时保证了每个用户的个性化服务。 在有限反馈通信系统中,由于信道状态信息(CSI)的获取通常是有限且不精确的,因此选择合适的预编码技术至关重要。MMSE预编码是一种优化策略,其目标是在考虑信道噪声和干扰的情况下最小化期望平方误差。在RSMA中,MMSE预编码用于在发射端对数据流进行处理,以减少接收端的干扰,提高解码性能。 以下代码研究RSMA与MMSE预编码的结合以观察到如何在实际系统中应用RSMA的速率拆分策略,并结合有限的反馈信息设计有效的预编码矩阵。关键步骤包括: 1. **信道模型的建立**:模拟多用户MIMO环境,考虑不同用户之间的信道条件差异。 2. **信道反馈机制**:设计有限反馈方案,用户向基站发送关于信道状态的简化的反馈信息。 3. **MMSE预编码矩阵计算**:根据接收到的有限反馈信息,计算出能够最小化期望平方误差的预编码矩阵。 4. **速率拆分**:将每个用户的传输信息划分为公共和私有两部分。 5. **信号发射与接收**:使用预编码矩阵对信号进行处理,然后在接收端进行解码。 6. **性能评估**:分析系统吞吐量、误码率等性能指标,对比不同策略的效果。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值