机器学习
Titan0427
这个作者很懒,什么都没留下…
展开
-
机器学习算法入门之(二) 决策树算法
本文简单描述了经典的分类算法:决策树算法。原创 2015-12-27 21:48:45 · 1195 阅读 · 0 评论 -
机器学习算法入门之(四) SVM
最早是由 Vladimir N. Vapnik 和 Alexey Ya. Chervonenkis 在1963年提出;目前的版本(soft margin)是由Corinna Cortes 和 Vapnik在1993年提出,并在1995年发表;深度学习(2012)出现之前,SVM被认为机器学习中近十几年来最成功,表现最好的算法。原创 2015-12-28 16:45:06 · 1713 阅读 · 0 评论 -
机器学习算法入门之(一) 梯度下降法实现线性回归
文章的背景取自An Introduction to Gradient Descent and Linear Regression,本文想在该文章的基础上,完整地描述线性回归算法。部分数据和图片取自该文章。没有太多时间抠细节,所以难免有什么缺漏错误之处,望指正。线性回归的目标很简单,就是用一条线,来拟合这些点,并且使得点集与拟合函数间的误差最小。原创 2015-12-24 12:32:13 · 62698 阅读 · 3 评论 -
梯度下降法和牛顿法的简单对比
梯度下降法和牛顿法机器学习问题可以分为两类:给定data求model;给定model求解θ" role="presentation">θθ\theta : SGD或BGD(沿一阶方向)Newton(沿二阶方向)BFGS(居于一、二阶方向之间)L-BFGS通过一个例子来对比两种求参算法的区别。问题:求解a" role="presentation">a−−√原创 2018-02-04 21:02:35 · 1328 阅读 · 0 评论 -
sklearn的roc_curve()函数分析
在用sklearn的roc_curve()函数的时候,发现返回的结果和想象中不太一样,理论上threshold应该取遍所有的y_score(即模型预测值)。但是roc_curve()的结果只输出了一部分的threhold。从源码找到了原因。初始数据:y_true = [0, 0, 1, 0, 0, 1, 0, 1, 0, 0]y_score = [0.31689620142873609,...原创 2018-02-23 18:40:14 · 27501 阅读 · 13 评论