快速排序简单理解(实现原理以及不稳定性)

一 基本原理

   快速排序的根本可以说就是通过分治法来实现,简单举一个例子来理解一下快速排序的过程。

    我们现在对(56,28,45,93,10,32,44,95,60,58)进行排序

    首先我们定义三个量,i,j,flag。i是数组第一个值的下表即i=0。j是数组最后一个值的下表即j=9,flag就是数组的第一个值即flag=56,现在我们要做的就是讲这个数组中所有比flag小的数放到他的前面,把所有比flag大的数放到他的后面。

    第一步从j开始向左(前)找,找到第一个比flag小的数,是下标为6的数44,我们就将44与flag56进行交换从而使数组变成(44,28,45,93,10,32,56,95,60,58),此时的j=6

    第二步从i开始向右(后)找,找到第一个比flag大的数,是下标为3的数93,我们就将93与flag56进行交换从而使数组变成(44,28,45,56,10,32,93,95,60,58),此时的i=3

    第三步继续从j(此时j=6)开始向左找,找到比flag小的数,是下标为5的数32,我们将32与flag进行交换,得到数组(44,28,45,32,10,56,93,95,60,58),此时j=5

    第四步从i(此时i=3)开始向右找,找到比flag大的数,直到i=j,我们发现在j之前已经找不到比flag更大的数,此时快速排序的第一轮就已经结束,这个时候在flag之前的数都是比他小的,在他之后都是比他大的,我们再将flag前后两片区域重新定义成新的无序的数组,分别对他们重复刚才的过程,直到分解到每个重新划分的区域内只有一个值,排序就算完成了。我们直接将过程贴在下面

        (44,28,45,32,10)(5693,95,60,58)

        10,28,45,32,44)(5658,95,60,93

        (10,28,44,32,45)(56(58,93,60,95)

        (10,28,32,44,45)(56(58,60,93,95)

        (10,28,32)(44)(45)(56)(58)(60)(93)(95)

        (10)(28)(32)(44)(45)(56)(58)(60)(93)(95)

         排序结束

二 稳定性问题 

    首先大家应该都知道快速排序是一个不稳定排序算法,那么到底什么才是排序的稳定性呢,我认为通俗的讲有两个相同的数A和B,在排序之前A在B的前面,而经过排序之后,B跑到了A的前面,对于这种情况的发生,我们管他叫做排序的不稳定性,而快速排序在对存在相同数进行排序时就有可能发生这种情况。

    例如(5,3A,6,3B)对这个进行排序,排序之前相同的数3A与3B,A在B的前面,经过排序之后会变成

        (3B,3A,5,6),所以说快速排序是一个不稳定的排序

三 时间复杂度

    简单的总结一下快速排序的时间复杂度问题

     最优情况:每一次的flag刚好都可以平分整个数组,此时的时间复杂度为O(nlogn)

     最坏情况:每一次的flag刚好都是最大或者最小的数,此时的时间复杂度为O(n2)

     平均情况:经过推到平均情况为O(nlogn)

对算法没有什么深刻的理解,可能写的比较肤浅,多多包涵,如果有错误希望可以帮忙指出,谢谢大家^.^

发布了11 篇原创文章 · 获赞 11 · 访问量 1万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览