自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(8)
  • 收藏
  • 关注

原创 【paper吐槽】【SelfSupervised Learning】Self-Supervised Image Restoration with Blurry and Noisy Pairs

不会吧!?怎么还有人吐槽NeurIPS2022中稿文章!!

2022-11-30 23:15:16 715 1

原创 # [Contrastive Learning] Contrastive Coherence Preserving Loss for Versatile Style Transfer

这是篇卖“问题”的文章。作者指出视频风格转换类方法目前还没有很好的解决"帧间不一致性"(Temporal Inconsistency或者Flicker Artifacts)问题,这导致转化后的视频总是特别“闪”. (笔者注,从演示demo来看其实也不见得,MCC Net之类的方法其实已经不太闪了)为什么会这样呢?作者认为是之前的方法太重视“全局约束”(global constraint),虽然全局约束确保了图像整体风格转换的稳定性上,当前帧和后续帧在风格转换的效果上不会出现大面积的突变;但是对于局部噪声的约

2022-07-26 00:24:54 280

原创 # [Contrastive Learning] Fast-MoCo

这是篇卖“问题”的文章。作者发现使用目前的对比学习方法,想要得到理想的效果往往需要很长的训练时间(比方说MoCo需要训练800个epoch)。作者认为,这主要是因为这类“**two-image-one-pair**”的对比学习范式,对于数据的利用率并不高。简单来说,就是一个sample的经过增广后的两个view(文中的“two-image”就是two-view)只能用作一个正例pair,这在训练过程中对于数据的利用十分低效。基于这个假设,很自然就能想到“**two-image-multi-pair**”,来

2022-07-24 16:23:28 373

原创 [Contrastive Learning] Improving Contrastive Learning by Visualizing Feature Transformation

这是篇卖“方法”的文章。 - 作者提供了一种可视化工具(称之为*score distribution*),来分析、解释与理解对比学习的学习过程 - 基于score distribution的观察,作者提出了两种特征层面上的增广方式(Feature Transformation, FT),能够有效涨点。FT的使用十分方便,能够嵌入到各类对比学习方法之中;...

2022-07-20 18:30:53 899 1

原创 Learning Temporal Consistency for Low Light Video Enhancement from Single Images

Learning Temporal Consistency for Low Light Video Enhancement from Single Images论文链接:CVPR链接期刊/会议:CVPR 2021是否有code: Code关键词暗光视频增强,卖方法,”半监督“;问题简述Motiviation笔者认为,这篇文章属于”卖方法“的范畴。作者认为,暗光视频增强这个任务最难的地方在于质量较好的训练视频对(暗光视频和对应的亮光视频)太难以获取了。因此,本文所提出的方法,其最大亮点就在

2021-10-28 16:22:36 1717 1

原创 Learning to Restore Low-Light Images via Decomposition-and-Enhancement

Learning to Restore Low-Light Images via Decomposition-and-Enhancement论文链接:CVPR链接期刊/会议:CVPR 2020是否有code: Code关键词暗光图像增强,卖问题;问题简述Motiviation这篇paper卖的问题很直接:作者认为目前大多数做暗光增强的方法,基本都无法同时完成提亮和去噪这两个任务,这导致暗光增强的算法很难投入实际应用中,因为实际的低光照图像信噪比很低,其实受噪声影响很大。同时,作者指出,

2021-10-25 22:21:35 1984 4

原创 EnlightenGAN: Deep Light Enhancement without Paired Supervision

EnlightenGAN: Deep Light Enhancement without Paired Supervision论文链接:https://arxiv.org/abs/1906.06972v2期刊/会议:TIP 2020是否有code: Code关键词暗光图像增强,卖方法,无监督,实时;问题简述&个人评价Motiviation:作者观察到,在通过PS提亮图片时,用户往往是通过手工调整图片的亮度曲线来完成的(也就是“Curves Adjustment”)。本文顺着这个思路

2021-09-27 21:56:14 991

原创 Zero-Reference Deep Curve Estimation for Low-Light Image Enhancement

Zero-Reference Deep Curve Estimation for Low-Light Image Enhancement论文链接:https://arxiv.org/abs/2001.06826期刊/会议:CVPR 2020是否有code: Code关键词暗光图像增强,卖方法,无监督,实时;问题简述&个人评价Motiviation:作者观察到,在通过PS提亮图片时,用户往往是通过手工调整图片的亮度曲线来完成的(也就是“Curves Adjustment”)。本文顺着

2021-09-20 20:40:08 808

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除