二叉树相关算法实现

本文详细介绍了二叉树的各种算法实现,包括二叉树的前序、中序、后序遍历的递归与非递归方法,层次遍历,判断二叉树是否为二叉排序树、完全二叉树和平衡二叉树,以及求完全二叉树的节点个数和二叉树的镜像操作。通过递归和非递归方式,解析关键逻辑,提供代码实现。
摘要由CSDN通过智能技术生成

二叉树结构定义

// 定义二叉树的形式
public class Node {
   
	public int value;
	public Node left;
	public Node right;
	public Node(int value) {
   
		this.value = value;
	}
}

二叉树打印所有节点

前序,中序,后序

递归方法


//前序递归
public void preOrder(Node head) {
   
	if(head == null) return;
	System.out.print(head.value + " ");
	preOrder(head.left);
	preOrder(head.right);
}
//中序递归
public void inOrder(Node head) {
   
	if(head == null) return;
 	inOrder(head.left);
 	System.out.print(head.value + " ");
 	inOrder(head.right)}
//后序递归
public void postOrder(Node head) {
   
 	if(head == null) return;
  	postOrder(head.left);
  	postOrder(head.right);
  	System.out.print(head.value + " ");
 }

非递归方法

前序:
利用stack,先压根节点。
每次弹出栈顶并打印,栈顶元素如果有右节点压右节点,有左节点压左节点。循环直到栈空。

public void preOrder(Node head) {
   
	if(head != null) {
   
		Stack<Node> stack = new Stack<>();
		stack.push(head);
		while(!stack.isEmpty() {
   
			head = stack.pop();
			System.out.print(head.value + " ");
			if(head.right != null) stack.push(head.right);
			if(head.left != null) stack.push(head.left);
		}
	}
}

中序:
当前节点为空,从栈中拿一个打印,向右查找,如果不为空,压入栈,向左查找。(先把节点的左边界都压进去)

public void inOrder(Node head) {
   
	if(head != null) {
   
		Stack<Node> stack = new Stack<>();
		while(!stack.isEmpty() || head != null) {
   
			if(head != null) {
   
				stack.push(head);
				head = head.left;
			} else {
   
				head = stack.pop();
				System.out
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值